
Interrogations of DNS of Solid-Liquid flows Addendum to Chapter XI

5/13/03 B-1

B. Addendum to Chapter XI (Addendum B). Lift forces on a cylindrical
particle in plane Poiseuille flow of shear thinning fluids

Wang and Joseph [2003] have extended the analyses of the slip velocities and the lift
on particles in plane Poiseuille flow from Newtonian fluids to shear thinning fluids.

Explicit formulas for the lift force have been derived in terms of the slip velocity and
angular slip velocity by correlating the data from numerical experiments.

� The lift force on a particle in a shear flow

Different analytical expressions for the lift force on a particle in a shear flow can be

found in the literature. Auton [1987] gave a formula for the lift on a particle in an inviscid
fluid in which uniform motion is perturbed by a weak shear. Bretherton [1962] found an

expression for the lift per unit length on a cylinder (two-dimensional sphere) in an
unbounded linear shear flow at small values of Reynolds number. Saffman [1965, 1968]

gave an expression for the lift on a sphere in an unbounded linear shear flow. Saffman’s
equation is in the form of the slip velocity multiplied by a factor, which can be identified

as a density multiplied by a circulation as in the famous formula �U�  for aerodynamic

lift. A number of formulas like Saffman’s exist and a review of such formulas can be

found in McLaughlin [1991]. Formulas like Saffman’s cannot explain the experiments by
Segrè and Silberberg [1961, 1962]. They studied the migration of dilute suspensions of

neutrally buoyant spheres in pipe flows and found the particles migrate away from both
the wall and the centerline and accumulate at a radial position of about 0.6 times the pipe

radius. There is nothing in formulas like Saffman’s to account for the migration reversal
near 0.6 of the radius.

The effect of the curvature of the undisturbed velocity profile was found to be
important to understand the Segrè and Silberberg effect. Ho and Leal [1974] analyzed the

motion of a neutrally buoyant particle in both simple shear flows and plane Poiseuille
flows. They found that for Couette flow, the equilibrium position is the centerline;

whereas for Poiseuille flow, it is 0.6 of the channel half-width from the centerline, which
is in good agreement with Segrè and Silberberg.

Choi and Joseph [2001], Patankar, Huang, Ko and Joseph [2001] and Joseph and
Ocando [2002] studied particle lift in plane Poiseuille flows by direct numerical

simulation. They showed that multiple equilibrium states exist for heavy particles in
plane Poiseuille flows. These equilibrium states can be stable or unstable and the

distinction leads to division of the channel into alternating stability regions in the
following order: wall – stable – unstable – stable – unstable – centerline (see Fig. B.3).

Joseph and Ocando [2002] analyzed the role of the slip velocity and the angular slip

velocity on migration and lift. They showed that the discrepancy �s -�se, where �se is the

angular slip velocity at equilibrium position, is the quantity that changes sign across the
equilibrium position. Thus, this discrepancy can be used to account for the migration

from both the wall and the centerline to the equilibrium position.

Power law correlations are frequently observed in studies of solid-liquid flows. A

famous example is the Richardson-Zaki correlation, which is obtained by processing the
data of fluidization experiments. The Richardson-Zaki correlation describes the
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complicated dynamics of fluidization by drag and is widely used for modeling the drag

force on particles in solid-liquid mixtures. Correlations can also be drawn from numerical
data; for example, power law correlations for single particle lift and for the bed expansion

of many particles in slurries were obtained by processing simulation data (Patankar et al.
[2001]; Choi and Joseph

 [2001]; Patankar, Ko, Choi, and Joseph [2001]). The prediction

of power laws from numerical data suggests that the same type correlations could be
obtained from experimental data as was done by Patankar, Joseph, Wang, Barree,

Conway and Asadi [2002] and Wang, Joseph, Patankar, Conway and Barree
 

[2003]. The
existence of such power laws is an expression of self-similarity, which has not yet been

predicted from analysis or physics. The flow of dispersed matter appears to obey those
self-similar rules to a large degree (Barenblatt

 

[1996]).

 Most of studies on migration and lift are for Newtonian fluids. However, in many of
the applications the fluids used are not Newtonian and shear thinning is one of the most

important non-Newtonian properties. Papers treating the migration of particles in shear
flows of shear thinning fluids were done by Huang, Feng, Hu and Joseph [1997], Huang,

Hu and Joseph [1998] and especially by Huang and Joseph [2000]. All these authors used
the Carreau-Bird viscosity function (B.1) but only Huang and Joseph [2000] studied the

case when there is shear thinning but no normal stresses.

In this addendum, we extend previous studies of lift on a cylindrical particle in plane

Poiseuille flows of Newtonian fluids to shear thinning fluids. We show that the pattern of
the stability regions in shear thinning fluids is the same as that in Newtonian fluids. The

effects of shear thinning on the distribution of the stability regions are discussed. We
verify that the angular slip velocity discrepancy changes sign across the equilibrium

position for both neutrally buoyant particles and heavy particles. We derive power law
correlations for the lift force in terms of the slip velocity and angular slip velocity

discrepancy and demonstrate that these correlations can be made completely explicit.

� Governing equations

The 2D computational domain is shown in Fig. B.1. l and W are the length and width
of the channel respectively, and d is the diameter of the particle. The simulation is

performed with a periodic boundary condition in the x-direction. The solutions are
essentially independent of the channel length l for sufficiently large l. The geometric

parameters are W/d = 12, l/d = 22. The values of these parameters are taken from
Patankar at al.

 [2001] where they justified that the solutions are essentially independent

of the selected geometric parameters.

A constant pressure gradient p�  is applied which gives rise to Poiseuille flow and

the direction of the gravity force is perpendicular to the flow direction. In simulations in
periodic domains the fluid pressure P is split as follows:

xexg
x
����� ppP f�  �   

x
eg ppP f ������� �

where ex is the unit vector in x-direction, x is the position vector of any point in the
domain and g is the gravitational acceleration. p is periodic and solved in simulations.
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llength Channel
Figure B.1: The 2D rectangular computational domain.

We use the Carreau-Bird model for the shear thinning effects:
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where ��  is the shear rate defined in terms of  the second invariant of the rate of strain

tensor D. The shear thinning index n is in the range of 0 – 1 and 3,0 , ���
�

 are prescribed

parameters. We use 
0

� =1.0 11 ��

�� scmg , 
0

/��
�

=0.1 and 
3

� =1.0s throughout our

simulations.

We consider cylindrical particles of diameter d with the mass per unit length m =

�p�d
2/4 and the moment of inertia per unit length I = �p�d

4/32. A dimensionless

description of the governing equations can be constructed by introducing scales: the
particle size d for length, V for velocity, d/V for time, V/d for angular velocity and

dV /
0

� for stress and pressure. We choose

0
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which is the average velocity of  the undisturbed Poiseuille flow in Newtonian fluids. V

can be related to the shear rate at the wall )2/(
0

�� Wp
w
�� :
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for the velocity û  and pressure p̂  of the fluid and
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for the velocity 
p

Û  and angular velocity 
p

Ω̂  of the particle whose center of mass has the

coordinate X̂ . In equations (B.3) – (B.5) we use
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 The no-slip condition is imposed on the particle boundaries:

� �.ˆˆˆˆˆ
pp

XxΩUu ���� (B.6)

Following is a list of the dimensionless parameters:

fp �� / , density ratio;

d/W, aspect ratio;

0
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Instead of G, we use the gravity Reynolds number 
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W/d and 
0

/��
�

 are constant in our simulations; 
3

�  is also constant, so 2
�  would not

provide more information. Thus fp �� / , R, n and RG are the four dimensionless

parameters at play. The Reynolds number R and shear thinning index n together,

characterize an undisturbed Poiseuille flow. We define an average Reynolds number R  =

�fu0d/�0 where u0 is the average velocity of the undisturbed Poiseuille flow. In table B.1,

we list the average Reynolds numbers R  for flows characterized by (n, R) pairs. R

increases significantly with n decreasing at a fixed R.

n R R

1.0 20 20.00

0.9 20 24.28

0.8 20 30.48

0.7 20 39.70

1.0 40 40.00

0.9 40 51.84

0.8 40 69.97

0.7 40 97.89

1.0 80 80.00
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0.9 80 110.72

0.8 80 160.06

0.7 80 237.60

Table B.1: Average Reynolds numbers R  for flows characterized by (n, R) pairs.

� Undisturbed flow

We refer to Poiseuille flow without particles as undisturbed flow. The dimensionless
momentum equation in the x-direction for the undisturbed flow is

)
ˆ
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(

ˆ yd
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yd

d

W

d
��� . (B.7)

An analytical solution for the Poiseuille flow of a Carreau-Bird fluid is not known.

However, a numerical solution can be achieved by an iterative method. First )ˆ(ˆ 0 y��  is

assumed to be the shear rate of the Poiseuille flow of a Newtonian fluid and ))ˆ(ˆ( 0
y���  is

obtained. A new shear rate profile )ˆ(ˆ1 y��  is then computed and the steps are repeated until

)ˆ(ˆ y��  converges. The velocity )ˆ(ˆ yu  is obtained by integrating the shear rate.

(a) (b)

Figure B.2. The dimensionless velocity u/V= )2/( du
w

��  profiles (a) and the dimensionless

viscosity 
0

/��  profiles (b) of the Poiseuille flows with R = 40 and n = 0.7, 0.8, 0.9 and

1.0 (Newtonian fluid). Due to the symmetry of the profiles, only a half of the channel is
plotted.

The velocity and viscosity profiles of the Poiseuille flows with R = 40 and n=0.7, 0.8,
0.9, and 1.0 (Newtonian fluid) are plotted in Fig. B.2. The velocity profiles are

qualitatively similar to the parabolic profiles seen in flows of Newtonian fluids. At a
fixed R, the maximum velocity in the channel increases significantly as n decreases. The

viscosity profiles have their minimums at the wall (corresponding to the maximum �� ),

and their maximums at the centerline (corresponding to zero �� ).

� Stable and unstable equilibrium regions

An equilibrium is achieved for a freely moving and rotating cylindrical particle with a

given density in a Poiseuille flow when the particle migrates to a position ye of steady
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rectilinear motion in which the acceleration and angular acceleration vanish and the

hydrodynamic lift just balances the buoyant weight. Two types of simulations are
performed, unconstrained simulation and constrained simulation. In unconstrained

simulations, a particle is allowed to move and rotate freely to migrate to its equilibrium
position. The initial translational and angular velocities of the particle are prescribed and

initial-value problems are solved to obtain the equilibrium state. In constrained
simulations, the position of the particle in the y-direction yp is fixed and the particle is

allowed to move in x-direction and rotate. The solution of the flow evolves dynamically
to a steady state at which the lift force per unit length L on the particle is computed. Such

a steady state will be an equilibrium at y=yp if the density of the particle is selected so that
L just balances the buoyant weight per unit length, satisfying:

1
4/
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2

���

f

p

f
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dg
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L

�

�

��
(B.8)

where L̂  is a dimensionless lift force and represents the ratio between the hydrodynamic

lift force L and the buoyant force �fg�d
2
/4.

From the steady state values which evolve in constrained simulations, we are able to

obtain L̂  on the particle at any position y/d in the channel. We can divide the curve of L̂
vs. y/d from the wall to the centerline into four branches by three “turning points” (see

Fig. B.3). The “turning point” is defined as the position where the slope of the L̂  vs. y/d

curve is zero. On the first and third branches of steady solutions, the slope of L̂  vs. y/d
curve is negative, and the equilibrium points on these branches are stable. On the second

and fourth branches of steady solutions, the slope of L̂  vs. y/d curve is positive, and the

equilibrium points are unstable. We will indicate the unstable branches by dotted lines in
the figures.
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Figure B.3. A plot of L̂  vs. y/d for a flow with n=0.8 and R = 20 from constrained

simulations. The stable and unstable branches and three turning points are illustrated.
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Unstable branches are indicated by dotted lines. Two stable equilibrium points for a

particle with 
p

� / fρ  = 1.01 are shown.

 From the L̂  vs. y/d curve, the equilibrium position for a particle with a certain 
p

�

can be determined. The lift force required to balance the buoyant weight of a particle can

be computed from (B.8). If we draw a line on which L̂  equals to this required lift force,

the points of intersections between this line and the L̂  vs. y/d curve are the equilibrium
points for this particle. For heavier-than-fluid particles with intermediate densities, there

exist multiple stable equilibrium positions from the wall to the centerline (see Fig. B.3
where two stable equilibrium points for a particle with 

p
� / fρ  = 1.01 are shown).

However, for a neutrally buoyant particle ( L̂  = 0), only one stable equilibrium point
exists from the wall to the centerline.

Ho and Leal
 
[1974] studied the equilibrium position of a neutrally buoyant freely

moving and rotating sphere between plane bounding walls. They assumed that the walls

were so closely spaced that the lift could be obtained by perturbing Stokes flow with
inertia. They calculated dimensionless lateral force vs. lateral position curves  (equivalent

to our L̂  vs. y/d curve) for simple shear flow and 2D Poiseuille flow which are shown in

Fig. B.4. Comparing the dashed line in Fig. B.4 which is for 2D Poiseuille flow and the

L̂  vs. y/d curve in Fig. B.3, one can see that both of the two plots imply the centerline is
an unstable equilibrium position. However, the dashed line in Fig. B.4 indicates that there

are two branches from the wall to the centerline: wall – stable – unstable – centerline,
whereas four branches exist according to Fig. B.3. Ho and Leal only considered neutrally

buoyant particle and did not include the gravity term in the governing equation used in
their calculation. The frame of their work did not enable them to study the multi-

equilibrium positions of heavier-than-fluid particles. The results shown in Figs. B.3 and
B.4 are not strictly comparable; Ho and Leal studied spheres (3D) between plane walls at

indefinitely small R whereas our calculation is for 2D particles at much higher Reynolds
numbers.
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Figure B.4. Lateral force as a function of lateral position, both in dimensionless form. —-

, simple shear flow; - - -, 2D Poiseuille flow. (Adapted from Ho and Leal 1974)

The distribution of the equilibrium branches is affected by the shear thinning effects.

The L̂  vs. y/d curves are computed for the flows with R = 20, 40 and 80 and n=0.7, 0.8,
0.9 and 1.0 (Newtonian fluid). Two groups of typical curves are plotted in Figs. B.5 and

B.6.

We find that when the shear thinning effects become stronger, the stable branch near

the wall decreases in size; the unstable branch near the wall moves closer to the wall; the
stable branch near the centerline increases in size; the unstable branch at the centerline

decreases in size. The shrinkage of the unstable branch at the centerline implies that a
particle could be lifted to a equilibrium position closer to the centerline if shear thinning

effects are stronger. A closer equilibrium position to the centerline could also be achieved
when pressure gradient is higher, as shown first in Patankar et al. [2001] and confirmed in

our simulations. It seems that higher pressure gradient and stronger shear thinning both
lead to stronger inertia effects and could lift a particle closer to the centerline. In the

range of the Reynolds number and shear thinning index we simulated, the unstable
branch at the centerline never vanishes. Patankar et al. [2001] reported that in 2D

Poiseuille flows of an Oldroyd-B fluid at high Deborah number, the centerline can be a
stable equilibrium position and the Segrè and Silberberg effect does not occur. We did

not observe the same phenomenon in shear thinning fluids.
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Figure B.5. Near-the-wall part of L̂  vs. y/d curves of the Poiseuille flows with R = 20
and n=0.7, 0.8, 0.9 and 1.0 (Newtonian fluid). The unstable branches are indicated by

dotted lines and their starting and ending points are marked by pairs of short vertical
lines. With the shear index n decreasing, the stable branch near the wall decreases in size

and the unstable branch near the wall moves closer to the wall.
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Figure B.6. Near-the-centerline part of L̂  vs. y/d curves of the Poiseuille flows with R =

80 and n=0.7, 0.8, 0.9 and 1.0 (Newtonian fluid). The unstable branches are indicated by
dotted lines and short vertical lines are used to mark the starting points of these unstable

branches. With the shear index n decreasing, the unstable branch near the centerline
decreases in size.

� Angular slip velocity discrepancy and net lift force

 Joseph and Ocando [2002] studied slip velocities and particle lift in 2D Poiseuille

flows of Newtonian fluids. The slip velocity is Us=Uf-Up and the angular slip velocity is

fps ΩΩΩ �� , where Uf and �f = 2/�� �  are the translational velocity and angular

velocity of the undisturbed Poiseuille flow at the position of the particle and ��  is the

local shear rate. The net lift force is:

Ln = 4/)(
2
gdL fp ��� ��  �  )1(ˆˆ

���

f

p

n LL
�

�
. (B.9)

Joseph and Ocando found that the angular slip velocity discrepancy �s -�se, where �se is

the angular slip velocity at equilibrium, changes sign across the equilibrium position.
Furthermore, they showed that across a stable equilibrium position, the net lift force Ln

has the same sign as the discrepancy �s -�se; whereas across an unstable equilibrium

position, the net lift force Ln has the opposite sign as the discrepancy �s -�se.  In this
section, we verify that these conclusions hold in shear thinning fluids using constrained

simulations.

We fix a particle at positions slightly above (yp > ye) and below (yp < ye) its

equilibrium positions and compute the steady state lift force and angular slip velocity �s.

For a neutrally buoyant particle, both stable and unstable equilibrium positions are
investigated; for a heavy particle, both of its two stable equilibrium positions are

investigated.  Table B.2 shows the results for a neutrally buoyant particle and table B.3
shows those for a heavy particle.
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ye/d 4.35 6.0

�se/( )2
w

�� 1.25×10
-2 0.0

fixed yp/d 4.33 4.36 5.95 6.05

L/(�fg�d
2/4) 8.2×10

-5
-1.4×10

-5
-7.9×10

-5
7.7×10

-5

(�s -�se)/( )2
w

�� 2.5×10
-6 -4.5×10-4 5.8×10-5 -5.3×10-5

 Table B.2. The steady state values of L and �s -�se in dimensionless form at fixed
positions slightly above (yp > ye) and below (yp < ye) the equilibrium positions of a

neutrally buoyant particle in the flow with n=0.7 and R=20. The stable equilibrium

position is ye/d=4.35 with �se/( )2
w

�� =1.25×10-2. For the particle fixed below (yp/d =

4.33), �s -�se>0 and L>0; for the particle fixed above (yp/d= 4.36), �s -�se<0 and L<0.

The unstable equilibrium position is the centerline with ye/d=6.0 and �se/( )2
w

�� =0. For

the particle fixed below (yp/d = 5.95), �s -�se>0 but L<0; for the particle fixed above

(yp/d=6.05), �s -�se<0 but L>0.

ye/d 0.918 2.26

�se/( )2
w

�� 7.16×10-2 4.95×10
-2

fixed yp/d 0.9 1.0 2.25 2.5

Ln/(�fg�d
2/4) 1.88×10

-3
-6.4×10

-3
2.58×10

-4
-3.26×10

-3

(�s -�se)/( )2
w

�� 4.88×10-4 -1.44×10
-3

1.50×10
-5

-5.50×10
-3

 Table B.3. The steady state values of the net lift force Ln and �s -�se in dimensionless
form at fixed positions above (yp > ye) and below (yp < ye) the equilibrium positions of a

heavy particle (�p/�f=1.024) in the flow with n=0.9 and R=40. Two stable equilibrium

positions exist: ye/d=0.918 with �se/( )2
w

�� =7.16×10-2 and ye/d=2.26 with �se/( )2
w

��

=4.95×10-2. For either one of the equilibrium positions, �s -�se>0 and Ln>0 when the

particle is fixed below; �s -�se<0 and Ln<0 when the particle is fixed above.

Table B.2 and B.3 verify the conclusions about the discrepancy �s -�se, summarized

as following: �s -�se<0 when yp > ye ; �s -�se>0 when yp < ye. With a stable equilibrium

as the reference state, negative �s -�se leads to negative Ln, positive �s -�se leads to

positive Ln; with an unstable equilibrium position as the reference state, negative �s -�se

leads to positive Ln, positive �s -�se leads to negative Ln. (Ln=L in the case of a neutrally
buoyant particle.) These conclusions are for the lift force and slip velocity in steady flows

and do not hold generally for a free particle with accelerations.

� Lift correlations

Motivated by the conclusion that �s -�se has the same sign as Ln across a stable

equilibrium position, we seek the correlations between Ln and the product Us(�s -�se).

Such correlations may be constructed by analogy with the classical lift formula L= �CU

of aerodynamics. The proper analogs of U and � in the present context are Us and �s -�se

as first propsed in Joseph and Ocando [2002]. We proceed as follows to obtain the

correlations. First we compute L, Us and �s as functions of y by constrained simulations

in a steady flow with Reynolds number R and shear thinning index n. Then we correlate

dimensionless parameters based on L and Us(�s -�se) to power law formulas. These steps
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are repeated for different flows identified by (R, n) pairs and lead to correlations for each

flow. The coefficients in such correlations are functions of R and n which can be obtained
by data fitting analyses. Finally we obtain correlations between dimensionless L and

Us(�s -�se) with coefficients expressed as functions of R and n.

Figure B.7 shows the relative values of L, Us and �s in the steady flow with R= 20
and n=0.9.
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Figure B.7. The relative values of L, Us and �s in the steady flow with R=20 and n=0.9.

Dimensionless parameters based on local quantities are used to express the
correlations. The local dimensionless net force is:
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Two local Reynolds numbers are based on Us and �s -�se respectively:
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The product of 
U

R  and 
�

R is defined as F:
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To compute F(y) from (B.12), it is necessary to specify the equilibrium angular slip

velocity �se=�s(ye) where ye is the position at which the lift equals the buoyant weight.

The L̂  vs. y/d curve (Fig. B.3) shows that each and every value of y/d on the stable

branches is a possible equilibrium position (y=ye) for some particle �p. You may cover

the range of possible ye by varying the weight of the particle. Once ye is selected, �se is

given as �s(ye). The dependence of �se and Ln on �p makes the correlations between �(y)
and F(y) particle-density dependent. However, the steady state values of L do not depend
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on particle density. If we derive the correlations between �(y) and F(y) for one �p, the lift

force is essentially obtained and can be applied to particles with different densities. We
present the correlations with the single equilibrium position of a neutrally buoyant

particle as the reference. There are two advantages of this choice: the complexity of
multi-equilibrium positions of a heavy particle is avoided; the correlations are in simple

forms which are a power law for the stable branch near the wall and a linear relation for
the stable branch near the centerline.

For a neutrally buoyant particle, a single equilibrium position exists at N

e
yy �  (the

superscript is for “neutral”) with 0)( �
N

e
yL  and N

se

N

es
y ��� )( . Thus the dimensionless

parameters have the following form:

2)(

)(4
)(

y

ydL
y

f

��

�
� �  and 

� �
2

32
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)()(
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y

dyyU
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The correlations are in the following form,
),()/,,(),()/,,( nRmdynRFnRadynR ��     on the stable branch near the wall; (B.13)

)/,,(),()/,,( dynRFnRkdynR ��     on the stable branch near the centerline. (B.14)

the stable branch near the wall
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Figure B.8. The power law correlations between �(y) and F(y) on the stable branch near
the wall for the flows with R=20 and n=0.7, 0.8, 0.9 and 1 (Newtonian fluid).
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We obtain the correlations for flows with n=0.7, 0.8, 0.9 and 1.0 (Newtonian fluid).

In Fig. B.8, the correlations on the stable branch near the wall are plotted for the flows

with R=20. The power law correlations along with the correlation coefficients �
2
 are

shown in the figure. In Fig. B.9, two examples of the linear correlation between �(y) and
F(y) on the stable branch near the centerline are plotted for the flows with (R=20, n=0.7)
and (R=80, n=0.8). It can be seen that our correlations describe the data faithfully.

the stable branch near the centerline
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R=80, n=0.8

Figure B.9. The linear correlation between �(y) and F(y) on the stable branch near the

centerline for the flows with (R=20, n=0.7) and (R=80, n=0.8).

The prefactor a, the exponent m and the slope k in (B.13) and (B.14) are functions of

R and n. In table B.4, the coefficients a, k and m are listed along with R, n, and the

average Reynolds number R which can be viewed roughly as a parameter for the

combined effects of R and n. Coefficients a, m and k are also plotted against R  in Figs.

B.10-B.12.

n R R a m k

1 20 20 17.937 0.4003 53.171

0.9 20 24.28 21.589 0.4004 34.685

0.8 20 30.48 28.049 0.423 27.348

0.7 20 39.7 37.322 0.439 19.458

1 40 40.0 27.288 0.410 30.739

0.9 40 51.84 36.38 0.427 25.591

0.8 40 69.97 40.808 0.481 22.166

0.7 40 97.89 9.664 0.774 11.759

1 80 80.0 38.009 0.448 24.35

0.9 80 110.72 53.729 0.450 21.066

0.8 80 160.06 9.570 0.779 8.879

0.7 80 237.6 2.710 0.898 7.698

1 120 120 43.83 0.472 21.54

1 160 160 41.48 0.496 16.39
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Table B.4. The prefactor a, the exponent m and the slope k as functions of the shear index

n and the Reynolds number R.
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Figure B.10. The prefactor a vs. the average Reynolds number R .
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Figure B.11. The exponent m vs. the average Reynolds number R .
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Figure B.12. The slope k vs. the average Reynolds number R .

Figures B.10 and B.11 reveal that the power law correlation (B.13) on the stable

branch near the wall has two regimes. Flows of Newtonian fluids and weak shear

thinning flows fall into regime1 where the prefactor a increases with R  increasing and

the exponent m is in the range of 0.4 – 0.5. Regime2 has three flows (n=0.7, R=40),

(n=0.7, R=80) and (n=0.8, R=80) and can be identified as a strong shear thinning regime

where the prefactor a decreases with R  increasing and the exponent m is in the range of

0.77 – 0.9. From the values of the exponent m, we can tell that in regime2 the dependence

of the lift force on the product of slip velocities is stronger than that in regime1. It is

noted that the two flows (n=1.0, R=160) and (n=0.8, R=80) have very close values of R

but substantially different coefficients a, m and k (see table B.4); this indicates that

particle lift in strong shear thinning flows is different with that in flows of Newtonian
fluids at high Reynolds number. Figure B.12 exhibits one regime of the linear correlation

(B.14) where the slope k decreases with R  increasing. Figures B.10-B.12 also suggest

that power law or linear functions of R  could be used to approximate the prefactor a and

the exponent m in regime1 and the slope k. However, the error of such approximations
would be considerable. The reason of such error is that a, k, and m depend on both n and

R; one single parameter R  cannot fully describe the dependence of the coefficients on

the flow.

We cannot fully determine the coefficients a, m and k as functions of R and n because

of insufficient data. If we focus on flows of Newtonian fluids (n=1), R is the only active
parameter and we expect to get satisfactory a(R), k(R) and m(R) approximations by data

fitting analyses. The coefficients a, k, and m in flows of Newtonian fluids are listed as
functions of R in table B.5.

R a m k

20 17.94 0.400 53.17
40 27.29 0.410 30.74

80 38.01 0.448 24.35
120 43.83 0.472 21.54

160 41.48 0.496 16.39

Table B.5.The prefactor a, the exponent m and the slope k as functions of the Reynolds

number R for flows of Newtonian fluids. Data are consistent with those in table B.4.

Data fitting analyses yield:
428.0

34.5 Ra � ,  �2=0.94; (B.15)

386.00007.0 �� Rm ,  �2=0.99; (B.16)
515.0

5.232
�

� Rk ,  �2=0.96. (B.17)

Inserting (B.15), (B.16) and (B.17) into the correlations (B.13) and (B.14), we obtain
correlations which apply to flows of Newtonian fluids with a Reynolds number in the

range of 20 – 160.
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Replacing �(y) and F(y) in (B.18) and (B.19) with their dimensional forms and re-

arrange, we obtain the equations in the following form

�
�
�

�

�
�
�

�

�

��

��
�

��
� �� �

�

���

                               

                        

                                                                                 

(B.21) .centerline near thebranch  stable on the                                              

(B.20)  wall;near thebranch  stableon the 

                                           182.6

4.20

20.515-

0.1590.0021
0.3860.0007

1.2270.00140.2270.00140.428

)dΩ(ΩUρRL

d)Ω(ΩUηρRL
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sessf

N

sess

R
R

RR

0f

Note that for Newtonian fluids, �(y) reduces to �0.

Although correlations (B.20) and (B.21) are derived using the equilibrium of a

neutrally buoyant particle as the reference, they can be applied to heavy particles. To

demonstrate this, we first obtain Us and �s for heavy particles at their equilibrium states
from unconstrained simulations; these values are then inserted into (B.20) and (B.21) to

calculate the lift forces which should match the values of the buoyant weight of the heavy

particles. Two examples are shown in table B.6: a particle with �p/�f=1.016 in a flow

with R =40 and a particle with �p/�f=1.045 in a flow with R =80. In both cases two stable

equilibrium positions exist. The lift force for ye close to the wall is computed using (B.20)
and the lift force for ye close to the centerline is computed using (B.21). It can be seen

that the computed dimensionless lift forces are close to the values of the dimensionless

buoyant weight (�p/�f -1) of the particles. In this way we demonstrate that the correlations

derived for neutrally buoyant particles can be applied to heavy particles.

R
N

se
� (s

-1
) �p/�f �p/�f -1 ye/d �s (s

-1
) Us (cm/s) L̂

1.093 1.5765 0.2869 0.018
40 0.2094 1.016 0.016

2.377 1.1837 0.5393 0.014

0.9476 4.332 0.4526 0.046
80 0.4255 1.045 0.045

2.705 2.737 0.8241 0.047

Table B.6. Computation of the lift forces on heavy particles using the correlations (B.20)
and (B.21). The computed dimensionless lift forces are close to the values of the

dimensionless buoyant weight (�p/�f –1) of the particles.

Correlations (B.20) and (B.21) apply to 2D motion of a particle in a Poiseuille flow.

They may be compared to well-known lift expressions for a particle in a linear shear flow
with shear rate �� . The comparisons are at best tentative because the linear shear neglects

the effects of the shear gradient which is a constant in the Poiseuille flow and not small;
also because the lift expressions in linear shear flows are for indefinitely small Reynolds

number perturbing Stokes flow on an unbounded domain. Bretherton
 [1962] found that

the lift per unit length on a cylinder (2D sphere) at small values of �� /
2

aR ��  is given by

634.0))4/ln(679.0(

16.21
2
��

�

R

U
L

s
�

. (B.22)

Saffman [1965] derived an expression for the lift on a sphere in a linear shear flow

sorder termlower 46.6
25.05.05.0
�� aUL sf ��� � (B.23)

where a is the radius of the sphere. The lower order terms are:
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� �� ������ �
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8

223
��� sfs  aU

. (B.24)

 For a neutrally buoyant particle at equilibrium, L = 0 and from (B.22) and (B.23), Us

= 0. The Bretherton and Saffman formulas thus predict that the slip velocity is zero for a

neutrally buoyant particle at equilibrium in an unbounded linear shear flow. Patankar et
al.

 
[2001] argued that zero slip velocity is always one solution for a neutrally buoyant

particle freely moving in an unbounded linear shear flow, but it may not be the only
solution and it can be unstable under certain conditions not yet understood. Feng, Hu and

Joseph [1994] showed that a neutrally buoyant particle migrates to the centerline in a

Couette flow where Us = 0. From our simulations for 2D Poiseuille flows, Us � 0 at the

equilibrium position of a neutrally buoyant particle (see Fig. B.7); whereas �s = �se at

equilibrium gives rise to zero lift.

We find that our expression for the lift on the stable branch near the centerline (B.21)

is similar to the leading term in Saffman’s expression for the lift. If we make following

changes in equation (B.21): 
0

�

� Vd
R

f
�  � 

�

��
2

d
R

f
�

� , the power of R (-0.515) � (-0.5),

and use d = 2a, equation (B.21) becomes:

aUL
N

sessf )(2.365 5.05.05.0
����

�

��� � (B.25)

Comparing (B.25) and the leading term in (B.23), we note that both expressions are linear

in Us; both have a similar dependence on �f, �, and a after noting that (B.25) is for the lift

force per unit length. However, the dependence on �� and �s-�se is greatly different.

Another formula for the lift on a particle in an inviscid fluid in which uniform motion
is perturbed by a weak shear was derived by Auton [1987] and a more recent satisfying

derivation of the same result was given by Drew and Passman
 
[1999]. They find that in a

plane flow,

fsUaL �� ��
3

3

4
(B.26)

where 2/����fΩ . Expression (B.26) is similar to our correlation (B.21) but differs from

(B.21) in several ways: (B.26) has a constant prefactor for inviscid fluids whereas viscous

effects enter into (B.21) through R; the lift force depends on f�  - “spin” of the fluid in

(B.26) but on the angular velocity discrepancy N

ses
���  in (B.21); (B.26) is for 3D

spheres and (B.21) is for 2D cylinders.

We compare the lift forces computed from the direct numerical simulation and from

the lift expressions (B.21), (B.22), (B.23) and (B.26) in figure B.13. Our correlation
(B.21) and Bretherton’s expression (B.22) are for 2D cylinders and the dimensionless lift

L̂  is computed as )4//(ˆ 2dgLL f ��� ; Saffman and Auton’s expressions (B.23) and

(B.26) are for spheres and L̂  is computed as )/(ˆ 3

3

4 agLL f ��� . The slip velocity Us,

which is a functional of the solution, is prescribed in Bretherton, Saffman and Auton’s
expressions and undetermined in their theories. To calculate the lift forces from these

expressions, we use the values of Us obtained from our DNS. The values of Us, 
s

�  and
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N

se
�  obtained from the DNS are used in the calculation of (B.21).
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Figure B.13. A comparison of the lift forces computed from the direct numerical
simulation and from the lift expressions (B.21), (B.22), (B.23) and (B.26).  The lift forces

on the stable branch near the centerline in a flow of Newtonian fluid with R=80 are
plotted.

We draw the readers attention to the fact that the lift expressions (B.21), (B.22), (B.23)
and (B.25) apply to different scenarios and are not strictly comparable. Our correlation

(B.21) is for a freely rotating 2D cylinder without accelerations in a plane Poiseuille flow.
Bretherton’s expression (B.22) and Saffman’s expression (B.23) are both for the lift on a

particle in an unbounded linear shear flow with an indefinitely small Reynolds number;
the difference is that the former applies to a non-rotating 2D cylinder while the latter

applies to a rotating 3D sphere. Auton’s expression (B.26) applies to a fixed 3D sphere in
an inviscid fluid in which uniform motion is perturbed by a weak shear. Expressions

(B.22), (B.23) and (B.26) cannot predict the change of sign across the equilibrium
position; whereas our correlation (B.21) reproduces the DNS results faithfully.

Our correlations provide explicit expressions for the lift force on a particle in terms of

the slip velocity Us and the angular slip velocity discrepancy �s - �se.  We emphasize that

the relative angular motion is characterized by �s - �se rather than �s or �f. By using the

discrepancy, we are able to account for the Segrè and Silberberg effect. Our correlations
cover the whole channel except the unstable regions. We believe that our correlations

capture the essence of the mechanism of the lift force.

Correlations (B.20) and (B.21) are derived for L, Us and �s in steady flows, i.e., they
apply to particles with zero acceleration. For a migrating particle, correlations (B.20) and

(B.21) are not valid, although they might give good approximations when the
acceleration of the particle is small. The application of such correlations is to determine

parameters of a particle at equilibrium, e.g., the equilibrium position, translational

velocity and angular velocity. For this end, correlations which relate Us and �s to

prescribed parameters are needed. We will show derivation of such correlations is
feasible in the next section.
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� Correlations for slip velocity and angular slip velocity

To make correlations (B.20) and (B.21) completely explicit, we need correlations

which relate Us and �s to R and y/d in steady flows of Newtonian fluids. We illustrate the

procedure for �s. In Fig. B.14, the steady state values of �s/( )2
w

��  obtained in

constrained simulations are plotted against y/d for five values of R. If these data are

plotted on a log-log plot of �s/( )2
w

��  versus R, we obtain straight lines one for each value

of y/d from the wall to the centerline (five of which are shown in Fig. B.15), leading to
power law correlations:

)/()/(
2

),/( dyr

w

s Rdyb
RdyΩ

�

��
  �  

2

0)/()/(),/(
d

R
RdybRdyΩ

f

dyr

s
�

�
� .  (B.27)

The prefactor b and exponent r in these power law correlations, which are functions
of y/d, are plotted in Fig. B.16. With more data points, these functions could be fitted to

splines, making (B.27) completely explicit.
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Figure B.14. The steady state values of the dimensionless angular slip velocity �s/( )2
w

��

in flows of Newtonian fluids as a function of y/d.



Interrogations of DNS of Solid-Liquid flows Addendum to Chapter XI

5/13/03 B-20

0.001

0.01

0.1

10 100 1000

R

�
s
/(
2
�
w
)

y/d=1.0

y/d=2.0

y/d=3.0

y/d=4.0

y/d=5.0

Figure B.15. Power law correlations between �s/( )2
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��  and R at five values of y/d.
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Figure B.16. The prefactor b and exponent r in correlation (B.27) as functions of y/d.

A similar procedure for Us leads to

 )/()/(
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�0)/()/(),/( � . (B.28)

As for b and r in (B.27), c and q could be fit to splines if more data points were available.

Unlike correlation (B.27) which can be found at values of y/d from the wall to the
centerline, correlation (B.28) can only be found at values of y/d on stable branches of

steady solutions. It does not correlate well with the data for the unstable branches; in fact
for some values of R, Us is slightly negative at some values of y/d on the unstable branch

near the wall, which is incompatible with a power law in the form (B.28).

In addition to (B.27) and (B.28), we also need a correlation between N

se
Ω , the angular

slip velocity of a neutrally buoyant particle at equilibrium, and R, in order to make (B.20)

and (B.21) completely explicit. Table B.7 shows that N

se
Ω /( )2

w
��  is essentially constant

independent of R. Using the average of these values, we obtain:

 31021.5
2

)(
�

��

w
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se
RΩ

��
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031021.5)(
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se
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��� . (B.29)
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R 20 40 80 120 160
N

se
Ω /( )2

w
�� 5.06�10

-3 5.24�10-3 5.32�10-3 5.24�10-3 5.21�10-3

Table B.7. The dimensionless angular slip velocity of a neutrally buoyant particle at
equilibrium is essentially a constant in flows of Newtonian fluids with R=20 – 160.

If we now insert (B.27) - (B.29) into (B.20) and (B.21), we obtain completely explicit
(assuming sufficient data points for b, r, c and q to be fit to splines) correlations for the

lift force:
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These formulas allow us to calculate L for any value of y/d on the stable branches of the

L̂  vs. y/d curve (Fig. B.3), obviating the need for further numerical simulations.

The equilibrium position ye/d of a particle of density �p can be found as the value of

y/d at which the lift force equals the buoyant weight:

4
)(),/(

2d
gRdyL fpe

�
�� �� ;

 the slip velocities at equilibrium can then be calculated by inserting ye/d into (B.27) and
(B.28):

2

0)/(
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d

R
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�

�0)/(
)/(),/( �� .

The corresponding translational velocity Up and angular velocity �p of the particle at

equilibrium may then be calculated as Up = Uf (ye) – Use and �p = �se  - 2/)(
e
y�� .

� Conclusions

We study lifting of a cylindrical particle in plane Poiseuille flows of shear thinning
fluids. It is known that certain regions in a channel are unstable and a particle cannot

equilibrate in an unstable region. For example, Ho and Leal [1974] pointed out the
centerline is an unstable equilibrium position in a 2D Poiseuille flow. Our studies show

that the domain from the wall to the centerline in a 2D Poiseuille flow can be divided into
four regions with the following order: wall – stable – unstable – stable – unstable –

centerline. The distribution of these regions is affected by shear thinning. Our results
indicate that when shear thinning effects become stronger, the unstable region at the

centerline shrinks, indicating that the equilibrium position of a particle could be closer to
the centerline.
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The conclusion that the angular slip velocity discrepancy �s - �se changes sign across

an equilibrium position established by Joseph and Ocando
 
[2002] in Newtonian fluids is

confirmed in shear thinning fluids. Across a stable equilibrium position, �s - �se has the

same sign as the net lift force Ln; across an unstable equilibrium position, �s - �se has the
opposite sign as the net lift force Ln.

Correlations for the lift force on a particle in terms of the slip velocity Us and the

angular slip velocity discrepancy �s - �se are derived. The correlations are a power law
near the wall and a linear relation (which can be taken as a power law with the power of

one) near the centerline. The correlations apply to both neutrally buoyant and heavy
particles and cover the whole channel except the unstable regions. Two regimes, one with

no or weak shear thinning effects and the other with strong shear thinning effects, are
identified for the power law correlation (B.13) whereas only one regime is found for the

linear correlation (B.14). It is noted that particle lift in strong shear thinning flows is
different with that in flows of Newtonian fluids at high Reynolds number.

We are able to obtain correlations between L and Us(�s - �se) with coefficients

expressed as functions of R; these correlations cover the flows of Newtonian fluids with
the Reynolds number in the range of 20 - 160. The correlation is compared to well known

analytical expressions for lift force in shear flows and similarities between them are
revealed. The major difference between them is that the angular slip velocity discrepancy

�s - �se is used in our correlations instead of the shear rate or �s. We also demonstrate

that correlations which relate Us and �s to prescribed parameters can be constructed and
will make the correlations for L completely explicit. Thus the lift force in steady flows

can be calculated using correlations at any value of y/d on stable branches from the
prescribed parameters; the equilibrium position of a particle with a certain density can

then be determined by the balance between the lift force and its buoyant weight.


