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VIII Modeling Rayleigh-Taylor Instability of
a Sedimenting Suspension of Several Thousand
Circular Particles in Direct Numerical Simulation

In this chapter we study the sedimentation of several thousand circular particles in 2D using the
method of distributed Lagrange multipliers for solid-liquid flow. The simulation gives rise to fin-
gering which resembles Rayleigh-Taylor instabilities. The waves have a well defined wavelength
and growth rate which can be modeled as a conventional Rayleigh-Taylor instability of heavy fluid
above light. The heavy fluid is modeled as a composite solid–liquid fluid with an effective com-
posite density and viscosity. Surface tension cannot enter this problem and the characteristic short
wave instability is regularized by the viscosity of the solid liquid dispersion. The dynamics of the
Rayleigh-Taylor instability are studied using viscous potential flow generalizing work of Joseph,
Belanger, and Beavers 1999 to a rectangular domain bounded by solid walls; an exact solution is
obtained.

The data in this chapter is generated by the direct numerical simulation of solid–liquid flow
using a distributed Lagrange multiplier/fictitious domain method (see Glowinski, Pan, Hesla &
Joseph 1999, Glowinski, Pan, Hesla, Joseph & Periaux 2000). The calculation is carried on fixed
triangular mesh on which fluid equations are satisfied everywhere. Rigid motions of the portions
of the fluid occupied by solids are accomplished by a strategic choice of a Lagrange multiplier
field there. The method has a certain elegance in that the rigid motion constraint on the fluid is
associated with a multiplier field in a manner analogous to the way in which the pressure in an
incompressible flow is a multiplier field associated with the constraint on incompressibility. The
details of the computation have been given in the cited references and will not be repeated here.

Simulation Data

The specific simulations discussed in this chapter concern the sedimentation of several thousand
disks settling down in a 2D rectangular box filled with water of density �1 = 1 g/cm3 and viscosity
�1 = 0:01 poise. The disks of same diameter are initially arranged like those shown in Figure
VIII.2(a), Figure VIII.3(a) and Figure VIII.4(a). We also have shown in Figure VIII.1 the relative
position of disks in three different lattices mentioned above and call them square, hexagonal, and
rectangular respectively. In a square lattice the gap sizes in the horizontal and vertical directions
are the same. Similarly in a hexagonal case the gap size in the horizontal direction and the one
between rows in the vertical direction are the same. But in the rectangular case the gap size in the
horizontal direction is 1.2642 times of the one in the vertical direction.

The diameters of disks are 8=192 cm, 10=192 cm, 11=192 cm, 12=192 cm, 13=192 cm, 14=192
cm, 15=192 cm, and 16=192 cm. The density of disks is �p = 1:1 g/cm3. The volume fraction of
disks in the initial lattice is the ratio of the area Ap of the disks to the total area AT of the initial
lattice
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Figure VIII.1: Initial lattices.

whereN is the total number of the disks, d is the diameter of the disks,H is the height of the initial
lattice, and W is the width of the box. In the simulation we have chosen 4, 6, 8, 10, and 12 cm as
the width W and the height of the box is always 12 cm.

In the cases where the initial lattice is square, there are 60 rows of disks in most of the cases. In
each row, there are 42, 63, 84, 105, and 126 disks as the width is 4, 6, 8, 10, and 12 cm, respectively.
To test whether more rows of disks can have different effect, we also tested 80 rows cases in a 2D
box of width 10 cm and height 12 cm with diameters varying from 10/192 cm to 16/192 cm.

In hexagonal cases there are 6270 disks staggered at the top of the box (see Figure VIII.3(a)).
There are 60 rows and in each row there are either 104 or 105 disks. The width and the height of
the box are 10 cm and 12 cm respectively. The diameter of disks varies from 10/192 cm to 16/192
cm. In Figure VIII.3(b), the snapshot of the sedimentation of 6270 disks of diameter 10/192 cm in
a 2D box is shown.

In rectangular cases, there are 80 columns at the top of the box. We tested two sets of cases in
which the number of rows is either 60 of 80 in order to probe the effect of the number of rows. The
diameter of disks varies from 10/192 cm to 16/192 cm. In Figure VIII.4, there are snapshots of the
sedimentation of 4800 and 6400 disks of diameter either 10/192 cm or 16/192 cm in a 2D box.

In all simulations the averaged particle Reynolds number at each time step is less than 3. The
maximal individual particle Reynolds number among all simulations is about 11. In each case,
simulation gives rise to fingering which resembles Rayleigh-Taylor instabilities (Figures VIII.2,
VIII.3, and VIII.4). The waves have a well defined wavelength and growth rate which we shall
model as a conventional Rayleigh-Taylor instability of heavy fluid above light. The arrangement
of sedimenting particles is asymmetric, flat on the top (most of portion on the top in the hexagonal
case) and corrugated at the bottom. The drag on a single disk is smaller than when it is among
many so that isolated disks on the bottom fall out of the lattice and isolated disks on the top fall
into the lattice.
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(a). t = 0
(b). t = 0.476

 (c). t = 0.476

Figure VIII.2: Snapshots of the sedimentation of 5040 (top,W = 8 cm) and 7560 (bottom,W = 12

cm) disks of diameter 14/192 cm in 2D. The initial lattice is square.
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(a). t = 0 (b). t = 0.476

Figure VIII.3: Snapshots of the sedimentation of 6270 disks of diameter 10/192 cm in 2D (W = 10

cm). The initial lattice is hexagonal.

Two-fluid Model

We turn next to the two-fluid modeling of the instability of the sedimenting suspension just de-
scribed. The basic idea is to regard the particle laden portion of the sedimenting suspension (shown
in Figures VIII.2, VIII.3, and VIII.4) as an effective fluid with an effective viscosity �2 and an ef-
fective density �2 = (1��)�1+��p and, of course, zero surface tension 
; then we have two fluids,
an effective one above and water below. The dynamics of this two-fluid problem can be analyzed
using viscous potential flow (Joseph and Liao 1994). Joseph, Belanger and Beavers 1999 showed
that the wavelengths and the growth rates obtained with viscous potential flow differ from those
obtained from a fully viscous analysis by only a few percent. The success of the potential flow
analysis arises from the fact that main action of viscosity is in the viscous part of the normal stress
acting here in our problem through the effective viscosity of the solid–liquid suspension. Surface
tension can not enter into this problem so that the effective viscosity is the only mechanism which
regularizes an otherwise ill–posed problem in which the growth rate increases like 1=

p
�, tending

to infinity with ever shorter waves (Joseph and Saut 1990).

The analysis of Rayleigh-Taylor instability using viscous potential flow can be carried out in
an infinitely extended domain using the method of normal modes with disturbance proportional to

e
nt
e
i(kxx+kyy)e

�qz (VIII.2)

where, for viscous potential flow
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(a). t = 0
(b). t = 0.476 

 (c). t = 0.476  (d). t = 0.476 

Figure VIII.4: Snapshots of the sedimentation of 4800 (top) and 6400 (bottom) disks in 2D (W = 8

cm). The diameter of disks in (a), (b) and (c) is 10/192 cm and the diameter of disks in (d) is 16/192
cm. The initial lattice is rectangular.



Interog-4a.tex 70

xO
W

z

H2

H1-

Figure VIII.5: Initial configuration.

where the z increases against gravity g = 980:6635 cm/sec and the sign �k chosen so that the
amplitude decays at infinity. The analysis leads to the following dispersion relation (equation (25)
of Joseph, Belanger and Beavers 1999)

�2 + �1 =
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(�2 + �1): (VIII.4)

Equation (VIII.4) depends on kx and ky only through k in (VIII.3); hence (VIII.4) is valid in both
two and three dimensions and it applies to the planar problem under discussion.

To get k which maximizes n (with zero surface tension, 
 = 0), we differentiate (VIII.4) with
respect to k, set dn=dk = 0 and find that

k =
(�2 � �1)g

4n(�2 + �1)
: (VIII.5)

Substituting (VIII.5) into (VIII.4), we get the growth rate
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and the associated wave length is given by
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We also carry out similar analysis in the rectangular domain of the computation as shown in
Figure VIII.5, in which we can construct the viscous potential flow. Let W be the width of the
domain, H2 is the height of the fluid-solid mixture above water of height H1. Then the velocity
obtained from a potential  is u = r . Let z = �(x; t) be the interface. The normal stress balance
applied on z = 0 may be reduced, using Bernoulli’s equation, to
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The kinetic equation of motion of the perturbated free surface ! = @�=@t implies that
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(VIII.9)

The normal derivative of the potential  (x; z; t) must vanish on the solid wall, @ =@x = 0 on
x = 0 and x = W , @ 1=@z = 0 on z = �H1(< 0), and @ 2=@z = 0 on z = H2(> 0). The
normal mode solutions corresponding to (VIII.8) on the bounded domain are

8><
>:
 1 = A1e

nt
cos kx cosh k(z +H1); for z < 0;

 2 = A2e
nt
cos kx cosh k(z �H2); for z > 0;

� = A3e
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cos kx

(VIII.10)

where

k = (m+ 1)�=W: (VIII.11)

It is convenient to treat k as a continuous variable.

After inserting (VIII.10) into (VIII.8) and (VIII.9) we find the dispersion relation
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(VIII.12)

The analysis of (VIII.12) proceeds along conventional lines, we find the k which maximizes n;
this k is such that kH1 and kH2 is never smaller than 29 in those simulation cases and two tanh’s
in (VIII.12) are almost one giving rise to (VIII.4). The comparison of computation and the model
may then proceed on the basis of (VIII.4).

Comparison of Two-fluid Model and Simulation

The “effective” viscosity �2 of the solid-liquid dispersion is unknown and may be defined by our
stability analysis using the following procedure. We first select the associated wavelength k0 =

2�=� where � is the wavelength determined by the numerical experiment. From (VIII.7) we can
obtain the value of the effective viscosity �2 and then the associated growth rate by (VIII.6). The
determination of a growth rate from numerical simulation is carried out by fitting the growth in
the wave amplitude to bent. The wave amplitude is the distance of the wave crest defined by a line
through the centers of disks in the bottom row. The time step is 0.001 sec and the firest record
of distortion of the line of centers through the bottom row of disks is t = 0:026. Values of the
amplitude used in the curve fitting are at 0.025 second intervals from t = 0:026 to t = 0:476. In
Figure VIII.6, a set of amplitudes and the curve are shown for the case in Figure VIII.4(c).

The aforementioned procedure for determining the effective viscosity of sedimenting disks
from a stability calculation has been implemented for a large number of cases and the results
obtained are presented in Tables 1 through 12 and Figures VIII.9 through VIII.11. The data has
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Figure VIII.6: Amplitude vs. time for the simulation of instability of 6400 disks shown in Figure
VIII.4(c). The dashed line is obtained by curve fitting.

 (a). t = 0.476  (b). t = 0.476 

Figure VIII.7: Snapshots of the sedimentation of 9628 disks (left) and 11340 disks (right) of diam-
eter 8/192 cm in 2D (W = 8 cm). The initial lattice is square.
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(a). t = 0 (b). t = 0.276

Figure VIII.8: Snapshots of the sedimentation of 5040 disks of diameter 10/192 cm in 2D (W = 8

cm). The initial lattice is disordered.

been sorted by the geometry of the initial lattice of particles; square, hexagonal or rectangular
(Figure VIII.1). In each of these three categories we vary the width and height of the initial lattice
by adding or subtracting rows and columns of disks. Each table was indexed by the volume fraction
of disks; different volume fractions were created basically by changing the size of the particles.

The procedure we have adopted requires that we assess the success of the modeling by com-
paring the growth n(K0; �2) with growth rate from simulation. The largest discrepancy (Table
VIII.1) is of the order 30% but the error is less than 10% in the most of cases. In general the errors
are greater for small volume fractions and the largest errors occur at small volume fraction in the
narrowest (W = 4 cm in Table VIII.1).

The data for the square lattice in Table VIII.1 through 6 can be compared with the hexagonal
lattice in Table VIII.7 and in the rectangular lattice in Tables 8 through 10. The initial lattice of
disks is not modeled and it must have an effect. Obviously if most of the disks were in a ball,
it would be necessary at least to prescribe the distribution of volume fraction at the initial instant.
Results shown in Table VIII.4 (square) and Table VIII.7 (hexagonal) under otherwise identical con-
ditions do not reveal any important differences; the columns giving the effective viscosity for these
two cases match closely and can be seen graphically in Figure VIII.10. However, an examination
of the details of the instability in the region near the wall shows a dramatic difference between
the square (Figure VIII.2), the hexagonal (Figure VIII.3) and the rectangular (Figure VIII.4). The
staggered disks in the hexagonal case are such that only every other row of disks is near the wall, so
the wall region has a lower solid fraction and is “weaker” there in such a way the whole bed sinks
even as Rayleigh-Taylor waves develop. It is clear that the major effects of the wall are confined
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to a wall layer.

When adding more rows to some existing cases, the results shown in Tables 4 and 6 (square)
and Tables 8 and 9 (rectangular) again do not reveal any important differences; the columns giving
the effective viscosity for these two cases match closely as can be seen graphically in Figures
VIII.9 and VIII.11.

Since rectangular lattices are clearly more anisotropic than square ones, much greater differ-
ences in the effective viscosity when calculated at the same volume fraction in simulations starting
from square and rectangular lattices of disks are evident in comparisons of Tables 3 and 8 and
summarized in Figure VIII.11.

To test whether different size particles with same volume fraction would give rise to the same
result, we used smaller disks of diameter 8/192 cm in simulations with square lattice. The results
are shown in Figure VIII.7 and Table VIII.11. Comparing the results in Table VIII.3 with same
dimension and about the same volume fraction and H2, again we found that the effective viscosity
is not uniquely determined by the volume fraction.

We also considered a disordered initial lattice which was generated from a square lattice by
moving disks in the horizontal and vertical directions randomly within a given distance except
those disks in the bottom row which were only allowed to move in the horizontal direction. This
initial configuration is not really a random one. (To generate a random initial configuration with a
sharp and flat interface, we have to have many much smaller particles. This is beyond the capability
of our code for now.) The results are shown in Figure VIII.8 and Table VIII.12. We still can find
the development of waves in Figure VIII.8. We believe that the distribution of disks in these rows
right above the bottom row is a perturbation which has strong influence to the development of the
interface. The viscosity is consistent with those of square and hexagonal cases with wider width
(greater than or equal to 8 cm) and about the same solid volume fraction.

Discussion and Conclusions

The direct 2D simulation of the sedimentation of a close packed array of circular particles into
a rectangular box filled with water gives rise to fingers of particles with a wave structure which
resembles that which arise from Rayleigh-Taylor instability of heavy fluid above light. The wave
length and growth rate of falling particles can be compared with a two-fluid model of the Rayleigh-
Taylor instability using viscous potential flow. The particle-fluid mixture is modeled as a heavier
than water fluid with an effective density and viscosity. The effective density function of the solid
fraction is given by the formula �(�) = �p� + �f(1 � �) which can be justified by ensemble and
other kinds of averaging. Interfacial tension can not enter at the nominal water-mixture interface.
The two-fluid model used here to study the Rayleigh-Taylor instability then is fixed when the
hindered settling function f(�), which determines the effective viscosity �(�) = �wf(�) where �w
is the viscosity of water, is known. Many formulas have been proposed (see, for example, Figure
3 in Poletto & Joseph 1995) and none are perfect.

The effective viscosity of a suspension is a way of describing the flow resistance due to internal
friction in a slurry. The resistance can depend on factors like wall proximity, particle size, particle
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distribution and other factors even when the solid fraction is fixed. Clumped particles fall faster
than well mixed particles, particles near walls fall more slowly. The flow type is also a factor, the
effective viscosities of settling, shear and extensional flows are in general different even when the
volume fraction is fixed. It is necessary to think of an effective viscosity of a dispersion under well
specified conditions; one suit will not fit all.

In our study we focus our attention on the effective viscosity functions of the volume fraction
which gives rise to arrangements between computational experiments and two-fluid theory in a
restricted situation; we choose the viscosity function to obtain the same number of waves from
theory and numerical experiments. The theory may then be used to predict the growth rate and
this theoretical value can be checked against numerical experiments. Theoretical and experimental
values are listed in last two columns of Tables 1–12 and the agreements are satisfactory.

We have already argued that effective property models live only in well prescribed situations.
This is a negative for modeling because besides the model we must specify the situations in which
such model exists. In this chapter we determined viscosity function

�(�;W;H1; H2; d; I)

where different functions of � are obtained when the bed geometry W , H1 and H2 (Figure VIII.5),
the particle size d and the initial lattice I (Figure VIII.1) are varied.

The asymptotic case of a semi-infinite bed in whichW ,H1 andH2 tend to infinity is of specific
interest since in this case there is no length to compare with the circle diameter d; the instability
must be independent of d but could depend on the initial lattice I of particles. This asymptotic case
might be the most universal, the one closest to our two-fluid model on the semi-infinite domain
leading to (VIII.4).

The periodic box of length W used in our exact solution (VIII.10) can be repeatedly extended
onto the infinity, but the ratio d=W then is a solution parameter. The asymptotic limit of a semi-
infinite domain mentioned above would be achieved when

d=W ! 0:

Unfortunately, we can’t compute when there are very many small particles d ! 0 at finite � or
W ! 1 at finite �. Our data shows that the observed wave length in the numerical simulation is
decreasing function of d=W when the initial arrangement of particles is fixed (see Tables 1-6 and
8-11). The data suggests that there is a limiting value, depending on the initial arrangement, also
for the two-fluid model as is indicated by the convergence of viscosity function exhibited in Figure
VIII.9.

Figure VIII.9 shows a very strong effect of the walls; this arises as a consequence of the varia-
tion of d=W for a fixed d and by a perhaps serious mismatch of theory and numerical experiment
which is amplified by reducing W . Nearby walls have a big effect when the no-slip condition at
the side-walls is enforced, as in the numerical simulation. The no-slip condition is not enforced
in the viscous potential flow theory; the retardation due to the walls is apparently realized in the
model by a higher value of effective viscosity. This value is larger when the solids fraction is small
because the shielding from the wall by other particles works less well when there are few than



Interog-4a.tex 76

when there are many particles. The viscous potential flow model, which apparently works well
as a fully viscous two-fluid model for Rayleigh-Taylor instability, may not be good approximation
when the walls are close. A fully viscous two-fluid model of Rayleigh-Taylor instability would
probably give better results.

The initial lattice of particles is an important parameter in our effective property model of
Rayleigh-Taylor instability. Rather large differences in the effective viscosity are demonstrated
between square and rectangular lattices are exhibited in Figure VIII.11. Figures VIII.4(b) and
VIII.4(c) exhibit an increase of local solid fraction near the interface. However, when we increased
the diameter of the disks from 10/192 cm to 16/192 cm, this increase of local solid fraction is
reduced dramatically (see Figure VIII.4(d)). An effective property model might be expected to
work best in a statistically homogeneous media. The square and hexagonal arrangements are
periodic in x and y with same period but the rectangular arrangement is doubly periodic.

The overall conclusion of this study is that effective two-fluid models can be made to work
in particulate flow but such theories require a prior prescription of the domain of arrangements of
particles to which the theory might apply. The greatest predictive value of such effective theories
is for statistically homogeneous media.

Table VIII.1. The dimension of the box is (W;L) = (4; 12) and H2 varies from 5.6541 to 5.6831.
The number of disks is 42 � 60 = 2520 (60 rows). The averaged particle Reynold number at the
final time step varies from 2.226 to 1.692. Initial lattice is square.

Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

10/192 23.74% 1.0, 2 0 � 0.14409 6.012 9.201

11/192 28.69% 0.8, 2.5 � 0.11135 7.380 10.237

12/192 34.10% 0.667, 3 0 � 0.09078 8.801 11.185

13/192 39.97% 0.615, 3.25� 0.08690 9.904 12.716

14/192 46.29% 0.571, 3.5 � 0.08346 11.044 14.645

Table VIII.2. The dimension of the box is (W;L) = (6; 12) and H2 varies from 5.6738 to 5.7031.
The number of disks is 63 � 60 = 3780 (60 rows). The averaged particle Reynold number at the
final time step varies from 2.248 to 1.296. Initial lattice is square.
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Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

10/192 23.66% 0.600, 3.33 � 0.06149 7.748 9.941

11/192 28.60% 0.545, 3.67 � 0.05821 8.924 10.451

12/192 34.01% 0.500, 4.00 � 0.05537 10.150 11.402

13/192 39.88% 0.4615. 4.33 � 0.05287 11.423 12.565

14/192 46.21% 0.4615, 4.33 � 0.05778 12.278 14.512

15/192 53.00% 0.429. 4.67 � 0.05506 13.623 14.536

16/192 60.25% 0.4138. 4.83 � 0.05593 14.756 13.917
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Table VIII.3. The dimension of the box is (W;L) = (8; 12) and H2 varies from 5.6838 to 5.7059.
The number of disks is 84 � 60 = 5040 (60 rows). The averaged particle Reynold number at the
final time step varies from 2.261 to 1.278. Initial lattice is square.

Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

10/192 23.61% 0.500, 4.00 � 0.04433 8.480 10.056

11/192 28.56% 0.471, 4.25 � 0.04462 9.600 10.712

12/192 33.96% 0.444, 4.50 � 0.04474 10.758 11.377

13/192 39.83% 0.432, 4.625 � 0.04698 11.795 12.503

14/192 46.17% 0.421, 4.75 � 0.04903 12.849 14.377

15/192 52.96% 0.41025, 4.875 � 0.05091 13.919 13.849

16/192 60.22% 0.41025, 4.875 � 0.05507 14.816 15.039

Table VIII.4. The dimension of the box is (W;L) = (10; 12) andH2 varies from 5.6899 to 5.7075.
The number of disks is 105� 60 = 6300 (60 rows). The averaged particle Reynold number at the
final time step varies from 2.268 to 1.276. Initial lattice is square.

Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

10/192 23.59% 0.455, 4.4 � 0.03707 8.889 9.979

11/192 28.53% 0.435, 4.6 � 0.03848 9.983 10.544

12/192 33.93% 0.4167, 4.8 � 0.03967 11.107 11.313

13/192 39.81% 0.4167, 4.8 � 0.04388 12.012 12.283

14/192 46.14% 0.4000, 5.0 � 0.04464 13.179 13.795

15/192 52.94% 0.39215, 5.1 � 0.04691 14.233 14.366

16/192 60.20% 0.37736, 5.3 � 0.04739 15.446 14.081
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Table VIII.5. The dimension of the box is (W;L) = (12; 12) andH2 varies from 5.6939 to 5.7087.
The number of disks is 126� 60 = 7560 (60 rows). The averaged particle Reynold number at the
final time step varies from 2.272 to 1.695. Initial lattice is square.

Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

10/192 23.57% 0.429, 4.667 � 0.03308 9.151 10.022

11/192 28.51% 0.414, 4.833 � 0.03500 10.230 10.570

12/192 33.92% 0.400, 5.000 � 0.03671 11.333 11.308

13/192 39.79% 0.400, 5.000 � 0.04066 12.257 12.308

14/192 46.12% 0.387, 5.167 � 0.04201 13.394 14.250

Table VIII.6. The dimension of the box is (W;L) = (10; 12) andH2 varies from 7.5865 to 7.6101.
The number of disks is 105� 80 = 8400 (80 rows). The averaged particle Reynold number at the
final time step varies from 2.268 to 1.264. Initial lattice is square.

Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

10/192 23.59% 0.47629, 4.2 � 0.04047 8.685 9.788

11/192 28.53% 0.45454, 4.4 � 0.04183 9.763 10.435

12/192 33.93% 0.43478, 4.6 � 0.04295 10.873 11.255

13/192 39.81% 0.41667, 4.8 � 0.04388 12.012 12.259

14/192 46.14% 0.40816, 5.0 � 0.04464 13.179 13.527

15/192 52.94% 0.38462, 5.2 � 0.04528 14.372 14.080

16/192 60.20% 0.37037, 5.4 � 0.04580 15.591 13.857
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Table VIII.7. The dimension of the box is (W;L) = (10; 12) andH2 varies from 5.6899 to 5.7017.
The number of disks is 105� 60 = 6270. The averaged particle Reynold number at the final time
step varies from 2.259 to 2.089. Initial lattice is hexagonal.

Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

10/192 23.48% 0.476, 4.20 � 0.04035 8.664 8.870

11/192 28.39% 0.455, 4.40 � 0.04170 9.740 9.257

12/192 33.77% 0.434, 4.60 � 0.04282 10.848 9.722

13/192 39.62% 0.417, 4.80 � 0.04374 11.984 10.513

14/192 45.92% 0.400, 5.00 � 0.04451 13.148 12.226

Table VIII.8. The dimension of the box is (W;L) = (8; 12) and H2 varies from 5.3711 to 5.7812.
The number of disks is 80 � 60 = 4800 (60 rows). The averaged particle Reynold number at the
final time step varies from 2.591 to 1.552. Initial lattice is rectangular.

Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

10/192 23.80% 1.14286, 1.75 � 0.17849 5.630 8.632

11/192 28.44% 1.0, 2.0 � 0.15883 6.572 9.723

12/192 33.42% 0.8889, 2.25 � 0.14358 7.548 10.679

13/192 38.74% 0.8421, 2.375 � 0.14268 8.338 13.034

14/192 44.39% 0.7619, 2.625 � 0.13084 9.370 13.508

15/192 50.35% 0.6956, 2.875 � 0.12105 10.428 15.038

16/192 56.61% 0.64, 3.125 � 0.11281 11.511 14.518
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Table VIII.9. The dimension of the box is (W;L) = (8; 12) and H2 varies from 7.1614 to 7.7083.
The number of disks is 80 � 80 = 6400 (80 rows). The averaged particle Reynold number at the
final time step varies from 2.593 to 1.523. Initial lattice is rectangular.

Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

10/192 23.80% 1.14286, 1.75 � 0.17850 5.630 8.298

11/192 28.44% 1.0, 2.0 � 0.15883 6.572 9.591

12/192 33.42% 0.8889, 2.25 � 0.14358 7.548 10.553

13/192 38.74% 0.8421, 2.375 � 0.14268 8.338 12.785

14/192 44.39% 0.7619, 2.625 � 0.13084 9.370 13.136

15/192 50.35% 0.6956, 2.875 � 0.12105 10.428 14.253

16/192 56.61% 0.64, 3.125 � 0.11281 11.511 13.900

Table VIII.10. The dimension of the box is (W;L) = (10; 12) and H2 is 7.7109. The number of
disks is 100� 80 = 8000 (80 rows). The averaged particle Reynold number at the final time step
is 0.857. Initial lattice is rectangular.

Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

16/192 56.59% 0.6061, 3.3 � 0.10315 11.827 13.959

Table VIII.11. The dimension of the box is (W;L) = (8; 12) and H2 varies from 5.6988 to
5.7047. The numbers of disks are 116 � 83 = 9628 (83 rows) and 126 � 90 = 11340 (90 rows).
The averaged particle Reynold number at the final time step varies from 1.031 to 1.536. Initial
lattice is square.

Wave length Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

8/192 28.77% 0.3478, 5.75 � 0.02484 11.207 11.914

8/192 33.92% 0.4, 5 � 0.03671 11.333 12.736
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Figure VIII.9: The effective viscosity �2 for which n(K0; �2) is maximum: the width of box is W
varying from 4 cm to 12 cm, and height of box is 12 cm, the initial lattice is square, the number of
rows is 60 (except the case W = 10(80) in which there are 80 rows), the number of column varies
from 42 to 126, and the diameter of disks varies from 10/192 cm to 16/192 cm.

Table VIII.12. The dimension of the box is (W;L) = (8; 12) and H2 is 5.6838. The number of
disks is 5040. The averaged particle Reynold number at the final time step is 3.022. Initial lattice
is disordered.

Wave length� Effective

Disk Solid and associated viscosity �2 for n(K0; �2) Growth

diameter fraction wave number which n(K0; �2) rate from

K0 (in cm�1) is maximum simulation

10/192 23.61% 0.4444, 4.5 � 0.03553 8.994 9.730

� The wave length is an averaged quantity in this case due to the irregular shape of waves.
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Figure VIII.10: The comparison of the effective viscosity �2 (for which n(K0; �2) is maximum): the
width of box is W = 10 cm, the height of box is 12 cm, the initial lattice is either square (W = 10)
and hexagonal (W = 10(h) ), the number of rows is 60, the number of column is 105, and the
diameter of disks varies from 10/192 cm to 16/192 cm.
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Figure VIII.11: The comparison of the effective viscosity �2 (for which n(K0; �2) is maximum): the
width of box is W = 8 cm, the height of box is 12 cm, the initial lattice is either square (W = 8)
and rectangular (W = 8(r)), the number of rows in square case is 60, those of rectangular case
are 60 and 80, the number of column is 80, the diameter of disks varies from 10/192 cm to 16/192
cm. Cases in which there 60 rows (resp., 80 rows) and 80 columns of disks are marked byr (resp.,
“x”). The “*” is a case in which there 100 rows and 80 columns of disks of diameter 16/192 cm.


