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EDITORIAL

The Last Conundrum

Mohamed Gad-el-Hak
Virginia Commonwealth University

Richmond, Virginia

[This editorial preceded the article “Zero-Pressure-Gradient Turbulent Boundary Layer,” by W.
K. George and L. Castillo, which appeared in  Appl ied  Mechanics  Reviews ,  v o l .  5 0 ,  n o .  1 2 ,
part 1, December 1997.]

Turbulence is the last great unsolved problem of classical physics.  Or so it goes for a quote variously attributed to
one of the great modern physicists Albert Einstein, Richard Feynman, Werner Heisenberg and Arnold Sommerfeld.
But in fact the closest sentiments to this quote that could be traced are due to the classical physicist Horace Lamb
who actually wrote starting with the second edition of his celebrated book Hydrodynamics (1895) under the heading
of Turbulent Motion:  “It remains to call attention to the chief outstanding difficulty of our subject.”  A more
humorous fable, also attributed to several of the great ones, goes as follows.  As he lay dying the modern physicist
asked God two questions:  Why relativity (or quantum mechanics, depending on who is departing), and why
turbulence?  “I really think,” said the famed physicist, “He may have an answer to the first question.”  No one knows
how to obtain stochastic solutions to the well-posed set of partial differential equations that governs turbulent flows.
Averaging those nonlinear equations to obtain statistical (nonstochastic) quantities always leads to more unknowns
than equations, and ad hoc modeling is then necessary to close the problem.  So, except for a rare few limiting cases,
first-principle analytical solutions to the turbulence conundrum are not possible.  In the words of John Lumley,
turbulence is a difficult problem that is unlikely to suddenly succumb to our efforts.  We should not await sudden
breakthroughs and miraculous solutions, but rather keep at it slowly building one small brick at a time.

Two of the greatest achievements of turbulence research are the Kolmogorov's universal equilibrium theory and the
universal logarithmic law of the wall.  In fact, there is a direct analogy between the two high-Reynolds-number
asymptotes, one being concerned with a cascade of energy and an inertial subrange in the frequency domain and the
other with a hierarchy of eddies and an inertial sublayer in the physical space.  The overall flow dynamics in both the
energy spectrum subrange and the wall-bounded flow sublayer is independent of viscosity.  Dimensional reasoning,
similarity and asymptotic analysis are the tools of choice to derive analytical expressions without actually solving
the intractable governing equations.

One of the fundamental tenets of boundary layer research is the idea that any statistical turbulence quantity (mean,
rms, Reynolds stress, etc.) measured at different facilities and at different Reynolds numbers will collapse to a single
universal profile when non-dimensionalized using the proper length and velocity scales (different scales are used near
the wall and away from it).  This is termed self-similarity or self-preservation and allows convenient extrapolation
from the low-Reynolds-number laboratory experiments to the much higher Reynolds number situations encountered
in typical field applications.  The universal logarithmic profile mentioned above describes the mean streamwise
velocity in the overlap region between the inner and outer layers of any wall-bounded flow, and is the best known
result of the stated classical idea.

The log-law has been derived independently by Ludwig Prandtl and G. I. Taylor using mixing length arguments, by
Theodore von Kármán using dimensional reasoning, and by Clark B. Millikan using asymptotic analysis.  Those
names belong of course to the revered giants of our field.  Questioning the fundamental tenet or its derivatives is,
therefore, tantamount to heresy.  But the questions and doubts linger as evidenced from the work of Simpson (1970),
Malkus (1979), Barenblatt (1979), Long (1981), Willmarth (1989), George (1992), Bradshaw (1993), Sreenivasan
(1993), Smits (1994), among others, who at different times challenged various aspects of this law.  And those are
only the ones who, with varying degrees of difficulty, could get their work published.  There is strong suspicion,
among the sacrilegists at least, that Reynolds number effects persist indefinitely for both mean velocity and, more
pronounceable, higher-order statistics, and hence that true self-preservation is never achieved in a growing boundary
layer.  In fairness to the high priests, their logarithmic law was always intended to be a very high-Reynolds-number
asymptote.  These issues and the cited references could be found in greater details in the survey by Gad-el-Hak and
Bandyopadhyay (Applied Mechanics Reviews  47 , no. 8, pp. 307–365, 1994).
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If in fact the log-law is fallible, the implications are far reaching.  Resolution of the full equations, via direct
numerical simulations, at all but the most modest values of Reynolds number is beyond the reach of current or near-
future computer capabilities.  Modeling will, therefore, continue to play a vital role in the computations of practical
flows using the Reynolds-averaged Navier-Stokes equations.  Flow modelers, in attempting to provide concrete
information for the designers of, say, ships, submarines and aircraft, heavily rely on similarity principles in order to
model the turbulence quantities and circumvent the well known closure problem.  Since practically all turbulence
models are calibrated to reproduce the law of the wall in simple flows, failure of this universal relation virtually
guarantees that Reynolds-averaged turbulence models would fail too.  Finally, developers of flow control devices to
reduce drag, enhance lift, etc., often have to extrapolate the widely available low-speed (or more precisely low-
Reynolds-number) results to high-speed flows of practical interest where no data are available.  Such extrapolation is
not possible if the difficult-to-quantify Reynolds number effects persist indefinitely.  For both scientists and
engineers the message is essentially back to the drawing board!

In a community of conformists, the heretics never have it easy, of course.  The peer review system, while essential
for weeding out the charlatans, the misguided and the fools, is somewhat biased against unorthodox ideas.
Nevertheless, the latest two papers to question the infallibility of the log-law are the article by George and Castillo
that follows this editorial and the one by Barenblatt, Chorin and Prostokishin, also published in Applied Mechanics
Reviews (vol. 50, no. 7, pp. 413–429, 1997). The two teams tackle the same problem quite differently and
independently.  Both papers offer concrete alternatives to the Reynolds-number-independent law of the wall.
Barenblatt et al. use scaling laws that invoke a zero-viscosity asymptote, while George and Castillo introduce new
tools they term asymptotic invariance principle (AIP) and near asymptotic, which result in a new law of the wall
with explicit Reynolds number dependence.  George and Castillo's new ‘law’ is deduced from first principles and fits
existing mean-velocity data better.  Significantly, the same methodology advanced by William George applies to
higher-order statistics as well.

When the log-law and its consequences are challenged, the usual immediate reaction is to doubt the credentials of the
blasphemer.  Something is wrong with her model, with his experiment, with her numerical scheme, or with an
endless list of potential pitfalls.  These are all genuine concerns that turn out to be valid most of the time, but
paranoiacs have enemies too!  There is also the persistent albeit misguided argument that the log-law fits the data
well enough for engineering applications.  If it isn't broke, don't fix it!  This pragmatism is of course
simultaneously the curse and the blessing of science conducted by engineers.  Moreover, while the errors involved in
attempting to fit the log-law to existing mean-velocity data are quite tolerable considering our inability to accurately
measure the friction velocity (the velocity scale necessary to collapse the plots), the corresponding errors for higher-
order statistics are egregious.  The entire enterprise is not unlike the sixteenth century debate over the Ptolemaic
view of the heavens and the Copernicus' model seeking to replace it.  The former theory served navigators well for
over 1400 years.  The Copernican theory made only small corrections but radically changed man's view of his
universe.  And it was a masterpiece in terms of its economy of postulates and assumptions, a necessary condition for
theoretical elegance.

In the paper that follows, the readers of AMR  are treated to what is perhaps the most rigorous challenge to date to
the law of the wall.  The article is a review but not in the traditional sense:  though centered around developing a
new theory that offers a viable alternative to the classical logarithmic velocity profile and its consequences, the novel
theory is validated using an abundant of experimental data available in the open literature.  In that sense then the
paper represents a complete review of its subject matter.  The theory presented for the zero-pressure-gradient boundary
layer is derivable from first principles and is extendible to other wall-bounded flows including channel and pipe
flows, boundary layers with pressure-gradient, and wall jets.  It is hoped that the publication of the following clearly
iconoclastic article will spur a new way of looking at wall-bounded flows and of challenging the status quo.  One
should of course ask the usual barrage of questions that only a vibrant collection of skeptical neurons could muster.
Is the theory simple, elegant and self-consistent?  Does the model provide a better fit to the data?  Does it explain
previous contradictions?  Is the theory based on a minimum number of assumptions?  Is it extendible to more
complex situations?  Are the results asymptotically correct?  Is the logic sound?  Is the mathematics free of errors?
....  A fitting end to this editorial is to once again quote John Lumley, my (elder) academic sibling and the doctoral
thesis advisor of William George.  “....  A theory that does all that in an effortless way is often called elegant.
Tomorrow, it may be wrong.  Even so, it deserves to be regarded as one of the better things of which man is
capable.”


