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Is the second coefficient of viscosity equal to the negative two-third of the

dynamic coefficient of viscosity?

The short answer to the above question is no, not in general.  Although the

issues involved remain partially open, the present brief is an attempt to clarify some

of the misconceptions and misuses embroiled in the subject of bulk viscosity.

Consider the genesis of the query.

To close the equations of motion for a continuum fluid, a relation between

surface forces and the flow field is needed.  A Newtonian fluid is that for which the

stress tensor is assumed to be linearly related to the rate-of-strain tensor.§  The

constant of proportionality between these two second-order tensors is in general a

fourth-rank tensor:

ij    =    ij
(0 )  +   Cijkl   ekl (1)

where ij  is the stress tensor, ij
(0 )  is the stress distribution that can exist in a

resting fluid, Cijkl  are the 81 coefficients of proportionality, and ekl  is the rate-of-

strain tensor.  The residual stress term must be retained for fluids, while the

corresponding term is dropped when deformable, compressible solids are considered

(Eringen, 1980).  In the theory of linear elasticity, the displacement are measured, by

                                                
§ The present brief does not deal with nonlinear, i.e., non-Newtonian fluids.
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convention, from a state in which the body is at rest under zero body forces, and

the residual stress term has no contribution to the equations of motion.  This is

justified because any process which reduces the finite motion at a point to zero

would not change perceptibly the thermodynamic state.  For fluids, this is not

necessarily the case.  The total stress appears in the equations of motion of fluids,

and it is therefore absolutely necessary to include ij
(0 ) .

For fluids, both ij
(0 )  and Cijkl  vary with the thermodynamic state specified

by, for example, the density and temperature.  However, the residual stress must be

the same regardless of the fluid state of motion, otherwise the assumed linear

relation between ij  and ekl  is violated.  Since the stress force exerted across any

element of a surface in a resting fluid is independent of the orientation of that

element (see, for example, Batchelor, 1967), it follows that:

ij
(0 )  =   − p ij (2)

where p is a scalar, called hydrostatic pressure or simply pressure, and ik is the

Kronecker delta (the only isotropic second-rank tensor).  The pressure is one more

unknown in fluid problems,§ but the continuity equation, which has no counterpart§§

in the theory of elasticity, provides an additional equation to close the problem.

The lack of microscopic surface moments ensures that the stress tensor is a

symmetric one.  If the fluid is further assumed to have no preferred directions, i.e.,

isotropic fluid, those 81 linear coefficients reduce to only two independent

coefficients (for a proof, see, for example, Long, 1961; Aris, 1962):  the dynamic

coefficient of viscosity (shear), and  the second coefficient of viscosity (dilatational).

                                                
§ For compressible flows, if the density and internal energy, for example, are taken as the two independent intensive
properties, then the intensive state of a simple thermodynamic system is fully specified. The pressure in that case is
not an independent variable and follows from the appropriate equation of state.  For a strictly incompressible fluid,
on the other hand, the pressure does not influence the thermodynamic state and is formally an unknown  mechanical
force per unit area whose gradient, but not absolute value, could be determined from the equations of motion.
§§ Of course mass is conserved whether the material is solid or liquid.  The simplifications of the linear elasticity
theory merely eliminate the need to consider explicitly the continuity equation.
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Thus for a Newtonian, isotropic fluid:

ik =  − p ik  +   
Ui
xk

 +  
Uk
xi

 
 
  

 
  +   

U j

xj

 
 
 

 
 
  ik (3)

where Ui is a velocity component in the xi -direction.

Continuum mechanics does not require any fixed relationship between the

two coefficients of viscosity, and one must appeal to statistical mechanics, to

macroscopic thermodynamics or, as a last resort, to experiments.  The precise value

of the second coefficient of viscosity is not needed for inviscid flows (both  and 

are assumed zero), for incompressible flows   ∇.
r 

U  =  0( ) , or when the boundary

layer approximations are invoked (normal viscous stresses << shear stresses).  On

those special cases, the thrust of the present question is muted although the

conceptual issues are always important.

If we define the mean pressure P  as the negative one-third of the sum of the

three normal stresses (a tensor invariant), Equation (3) yields:

  P  ≡  − 1
3 11 +  22 +  33( )  =  p −   +  2

3( )  ∇.
r 

U ( ) (4)

The factor  +  2
3( )  is often termed the coefficient of bulk viscosity, although

some textbooks mistakenly reserve this terminology for  itself.  Physically, this

factor is connected with the dissipation mechanism during a change of volume at a

finite rate.  In other words, the bulk viscosity provides a damping of volumetric

vibrations such as might occur during sound absorption.  Equation (4) implies that,

unless either  +  2
3( )  or   ∇.

r 
U ( )  is equal to zero, the mean (mechanical) pressure

in a deforming viscous fluid is not equal to the thermodynamic pressure; more on

this point later.  The second law of thermodynamics requires that both  and

 +  2
3( )  to be non-negative.
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In 1845, Stokes simply assumed that  +  2
3( )  = 0.§  The resulting negative

value of  implies that the tension required to produce a specified proportional rate

of stretching along one principal axis is reduced if the fluid is locally expanding.

This could easily be seen if Equation (3) is rewritten for i = k = 1, for example:

11 =  − p +  2  
U1

x1
 +    

U1

x1
 +  

U2

x2
 +  

U3

x3

 
 
  

 
 (5)

If  is negative and   ∇.
r 

U ( )  is positive, 11 necessary to produce a given rate of

stretching U1 x1  becomes smaller as the fluid dilation is intensified and/or as the

absolute value of  is increased.

Unfortunately, the above implication can neither be verified nor refuted with

direct measurements.  The bulk viscosity can be measured, albeit not very

accurately, by the attenuation and dispersion of intense ultrasonic waves (in order to

generate measurable effects).  In order to satisfy the quasi-equilibrium approximation

that requires the sound frequency to be small compared to the inverse of the

molecular relaxation time, the high-frequency data are frequently extrapolated to

zero frequency resulting in considerable scatter.  The second coefficient of viscosity

may not even be a thermodynamic property, since available measurements indicate

that  is frequency dependent.  Nevertheless, reasonably accurate, high-frequency

acoustic absorption measurements, in conjunction with the standard low-frequency

theory, do indicate that the Stokes’ hypothesis is correct only for monatomic gases

(Prangsma et al., 1973).

Very recently, Emanuel and Argrow (1994) have proposed an alternative, still

indirect, method for measuring the bulk viscosity.  Their yet-to-be-demonstrated

approach is particularly suited for dense polyatomic gases where the density-based

thickness of a shock wave is typically thousands of mean free paths.  Emanuel and

Argrow have shown analytically that the ratio  +  2
3( )  is linear with the

                                                
§ An alternative statement of Stokes’ hypothesis is that the average normal viscous stress is zero.
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aforementioned thickness which could readily be measured using the optical

reflectivity method or the electron-beam absorption technique.§

Several controversies exist in the literature regarding the second coefficient of

viscosity.  First, does the kinetic theory of gases prove that the bulk viscosity is zero

for a monatomic gas?  Truesdell (1954) argues that this statement is an assumption

of the theory and not a proof.  On the other hand, the Chapman–Enskog expansion

of the Boltzmann equation does yield a zero bulk viscosity for dilute gases without

internal molecular structure (Chapman and Cowling, 1970).  Furthermore, acoustic

attenuation measurements for inert gases support this conclusion.  Secondly, Karim

and Rosenhead (1952) report on several sound-wave-attenuation measurements that

yield a large, positive  for most liquids.  Once again, Truesdell (1954) disputes the

validity of these experiments (see also the extensive discussion on the general subject

of bulk viscosity provided under the leadership of Rosenhead, 1954).

Should there be any significant difference between the mechanical and

thermodynamic pressures?  This is an unsettling question, but the kinetic theory of

gases offers some guidance (Hirschfelder et al., 1954; Vincenti and Kruger, 1965;

Chapman and Cowling, 1970).  The mechanical pressure is a measure of the

translational energy of the molecules.  The thermodynamic pressure, on the other

hand, is a measure of the total energy, which might include additionally vibrational

and rotational modes and, for liquids and dense gases, intermolecular attraction.  For

dilute monatomic gases, the translational energy is the only mode of molecular

energy.  The mechanical and thermodynamic pressures are, therefore, the same state

variable and the bulk viscosity is zero as indicated earlier.

For polyatomic gases, the mechanical and thermodynamic pressures are not

necessarily the same.  The bulk viscosity is expected to be important if the

relaxation—or adjustment—time of the molecules is not small compared to the
                                                
§ In an unpublished report—not cited by Emanuel and Argrow, 1994—Frederick S. Sherman might have been the
first to use shock thickness data to estimate the second coefficient of viscosity of nitrogen (NACA TN 3298, 1955).
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characteristic time of the flow.  Consider, for example, the passage of a polyatomic

gas through a shock wave.  Vibrational modes of molecular energy are excited at

the expense of the translational modes, and the non-zero bulk viscosity is a measure

of the corresponding transfer of energy.  In this case, the gas within the shock is not

in thermodynamic equilibrium, the bulk viscosity is proportional to the longer

relaxation time for the relevant internal (nontranslational) modes to come to

equilibrium, and the mechanical pressure is no longer equal to the thermodynamic

pressure.

Classical kinetic theory is of course not applicable to liquids and dense gases.

The bulk viscosity for those situations is determined primarily from experiment and

is found, despite the considerable scatter in the data, to have a finite positive value.

The dense gas theory (Chapman and Cowling, 1970) provides some support for this

result.

Emanuel (1990) has recently pointed out that reliance on the Stokes’

hypothesis may not always be warranted.  He cites the example of hypersonic entry

into certain planets where the atmosphere consists largely of carbon dioxide.§  In

such cases, lack of knowledge of  might be especially detrimental to the accurate

computations of relevant engineering quantities such as the skin friction or heat

transfer rate.

From room temperature acoustic attenuation data, Tisza (1942) has

concluded that the bulk viscosity  +  2
3( )  for CO2 is three orders of magnitude

larger than its first viscosity coefficient . Truesdell (1953) concurs with this result.

Acoustic attenuation and other processes in gases with internal molecular structure

can involve thermodynamic nonequilibrium as indicated earlier, and such effects

may be modeled by a finite bulk viscosity as was done by Emanuel (1990) for a

relaxing polyatomic gas.
                                                
§ In a boundary-layer formulation, the bulk viscosity has a third-order effect.  In order to demonstrate a measurable
effect, Emanuel chose the extreme example of hypersonic flow of a gas with a very large bulk viscosity.
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By including a non-zero bulk viscosity as a correction term in a general, non-

similar formulation of hypersonic laminar boundary layers, Emanuel (1992) has

computed for the class of planetary problems cited earlier a heat transfer rate well in

excess of that based on Stokes’ hypothesis prediction.  There is also an effect on the

pressure which changed measurably across the wall layer, in contradiction to a key

result of classical boundary layer theory.  No significant effect on the skin friction

was reported.

In summary, much confusion still remains in the literature 150 years after

Stokes assumed that the bulk viscosity is zero.  In general, it is not.  The

thermodynamic and mechanical pressures differ when the fluid undergoes

nonequilibrium thermodynamic processes.  Considerable scatter is present in existing

data, and it is hoped that future experiments would provide more accurate estimates

of the bulk viscosity for liquids and polyatomic gases.

The author would like to acknowledge the fruitful discussion with Professor

George Emanuel, the University of Oklahoma, who has pointed to me several

valuable references, and to thank the three anonymous reviewers who gently

showed me how little I knew about this rich subject.  My colleague at Notre Dame

Professor Joseph M. Powers has read the manuscript at several stages of its

development.  The comments made by all five contributed significantly to the

present version of my unanswered question in fluid mechanics.
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