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Interrogations of DNS of Solid-Liquid Flows Introduction 

Abstract 

In direct simulation the fluid motion is resolved numerically and the forces which move 
the particles are computed rather than modeled. This procedure opens new windows for 

understanding and modeling. Numerical methods are discussed based on body fitted 
moving unstructured grids and another on a fixed grid in which the portions of the fluid 

occupied by solids are forced to move as a rigid body by a distribution of Lagrange 
multipliers. Animation of the fluidization of 1204 spheres in 3D will be compared with 

experiments and the concept of fluidization of slurries in conduits by lift rather than 
drag will be framed in animation by direct simulation. Correlation for lift-off of single 

particles and the bed height of slurries fluidized by lift are obtained by processing data 
from numerical experiments. 

I. Introduction 

The current popularity of computational fluid dynamics is rooted in the perception that 

information implicit in the equations of motion can be extracted without approximation using 
direct numerical simulation (DNS). 

� What is DNS? 

Direct numerical simulation of solid-liquid flows is a way of solving the initial value problem 

for the motion of particles in fluids exactly, without approximation. The particles are moved by 
Newton’s laws under the action of hydrodynamic forces computed from the numerical solution 
of the fluid equations. 

To perform a direct simulation in the above sense, therefore, one must simultaneously 
integrate the Navier-Stokes equations (governing the motion of the fluid) and the equations of 

rigid-body motion (governing the motion of the particles). These equations are coupled through 
the no-slip condition on the particle boundaries, and through the hydrodynamic forces and 
torques that appear in the equations of rigid-body motion. 

These hydrodynamic forces and torques must of course be those arising from the computed 
motion of the fluid, and so are not known in advance, but only as the integration proceeds. It is 

crucial that no approximation of these forces and torques be made--other than that due to the 
numerical discretization itself--so that the overall simulation will yield a solution of the exact 

coupled initial value problem--up to the numerical truncation error. 

Our goal is to do direct numerical solutions with many thousands of particles in three 

dimensions, with large volume fractions, for the various kinds of suspensions and slurries that 
model the practical particulate flows arising in applications like fluidized beds, slurry transport, 

transport of drill cuttings for oil production, and proppant sands in reservoir stimulations. In this 
article, we present the results of a simulation of the fluidization of 1204 spheres and other 
simulations for targeted applications. 
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The hope is that the direct simulation of the motions of thousands of particles will, in many 

cases, allow the large numbers of experiments used in deriving engineering correlations to be 
replaced by cheaper, safer numerical experiments in which flow, material, and process-control 

parameters can be altered with a computer command. With DNS you can turn physical factors on 
or off to isolate effects, which is something that cannot be done in experiments. There are also 

opportunities for the application of direct simulation to the diagnosis of industrial problems 
involving flowing particulates, to the establishment of benchmark standards for two-phase flow 

models (see Chapter VI), and to approximate numerical methods that track particles. 

� Approximate Methods 

The signal feature of approximate numerical methods which track particles is that the forces 
that the fluid exerts on the particle are modeled rather than computed as in DNS. Many excellent 

numerical studies of particulate flows of many particles which are not direct simulations in the 
above sense have appeared in recent years. These approximate methods include simulations 

based on potential flow, Stokes flow, and point-particle approximations. They all simplify the 
computation by ignoring some possibly important effects like viscosity and wakes in the case of 

potential flow; inertial forces which produce lateral migration and across-the-stream orientations 
in the case of Stokes flow; and the effects of stagnation and separation points in the case of 
point-particle approximations. 

Particle tracking methods take into account the particles and the fluid motion to understand 
particulate flow. Particle tracking methods move the particles by Newton’s equations for rigid 

bodies using forces that are modeled from single particle analysis or from empirical correlation 
rather than from forces which are obtained by direct computation from the fluid motion. This 

kind of simulation is called Lagrangian because the particles are tracked. The fluid motion in 
particle tracking methods are computed from field equations, like the Navier-Stokes defined at 

every point of the field including points occupied by the particles. This kind of computation from 
continuum partial differential equations on a field is called Eulerian; hence, particle tracking 

methods are Eulerian-Lagrangian. The particle tracking can have a one way coupling in which 
the fluid motion is computed without particles, and a two-way coupling in which some effects of 

the particle motion on the fluid motion are recognized. In most cases the two-way coupling is 
introduced by momentum exchange terms representing the force of the particles on the fluid. A 

more general coupling was introduced by Andrews and O’Rourke 1996 and Snider, O’Rourke 
and Andrews 1998. They presented a scheme that considers the particle phase both as a 

continuum and a discrete phase. Inter-particle stresses are calculated by treating the particle as a 
continuum phase, as in the fluid phase equations of a two-fluid model. This way, they can track 

the motion of the particles and at the same time model the inter-particle stress. In their scheme 
the viscosity of the fluid in the fluid phase is neglected. The method can handle particulate 

loading ranging from dense to dilute, and particles of different size and materials. The particles 
are grouped into parcels. The motion of the parcels is tracked by the Lagrangian approach. The 

number of parcels in a computational cell are used to calculate the solid phase volume fraction 
on the Eulerian grid. Patankar and Joseph 1999, 2001 have extended this kind of particle-in-cell 

method to account for fluid phase viscosity and other effects. 

The problem of particles in turbulent flows has been treated using turbulent flow models for 

the fluid with one-way coupling and two-way coupling with momentum exchange applicable to 
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dilute mixtures. These kind of turbulent flow models have been discussed by McLaughlin 1994 

in a comprehensive review paper. Some of these turbulent flow models are conventionally called 
DNS; they are not DNS for particulate flow in that the forces on the particles are modeled and 

not computed from the fluid motion. 

Another method used to compute solid-liquid is the Lattice Boltzmann method (LBM). This 

is an unconventional computational approach that constructs simplified kinetic models for the 
motion of discrete fluid particles. The LBM is inspired by Boltzmann’s equation which give rise 

nd 
to the Navier-Stokes equations at 2 order in Chapman-Enskog expansion and to Burnett 

rd
equations, which do not agree with experiments at 3 order. The LBM gives rise to equations for 

a compressible fluid, which are Navier-Stokes-like but not Navier-Stokes equations (see Qian, 
d’Humieres and Lallemand 1992, Ladd 1994, How, Zou, Chen, Doolen and Cogley 1995, Chen 

and Doolen 1998). The LBM may give rise to good approximations of isochoric flow when  the 
pressure gradients are not too large. For large pressure gradients the fluid will compress. The 

LBM gives rise to particulate flows that are close to those computed by DNS (see Ladd 1997; 
Aidun, Lu and Ding 1995, and Qi 1999). The good results achieved by LBM probably arise from 
the fact that the forces on particles for this method are computed rather than modeled. 

� Data Structure for Applications of DNS 

DNS generates huge amounts of data. It is necessary to post-process the data to get useful 

results. The way the data is generated and processed is determined by the application; to 
interrogate the data efficiently it is necessary to create a data structure for post processing. The 

problem of setting up a data structure for the interrogation of results of simulations is a way of 
determining the way that numerical simulations ought to be applied; it connects the 

computational world to the applications. 

The literature of DNS is by now fairly extensive. This literature is listed chronologically in 

chapter IV. This same literature, together with the paper abstracts and animations of computer 
simulations, can be found on our web page http://www.aem.umn.edu/Solid-Liquid_Flows. 
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II. Equations of Motion 

The equations to be solved in the ease of a Newtonian fluid are as follows. In the fluid we 
have 

�� u � 0 (II.1) 

and 

� �u � 2� �u �� �u� � H f g �� p �D� u . (II.2) H f �
� �t �

For simplicity of presentation we consider spherical particles. The mass center of the spheres are 

at X(t). The particles equations of motion are 

dU dω

d

d 

t 

θ

M � Mg � F[u], I � T [u] 
d t 

dX 
(II.3) 

� U, � M������

d t d t 

where F[u] is the force and T [u] the torque on the particle. The fluid velocity is the same as the 
particle velocity at the surface of the particle 

u � U �ω 	 r . (II.4) 

The fluid force F[u] acting on the boundary of the particle is the integral over the body surface of 
the traction 

nσ � n ��� p nD[u] �2D (II.5) 

where 

D[u] � ( 
2 

1 T 
uu ��� ) 

is the rate of strain and n is the outward normal and T [u] is the integral of the moment of the 
traction vector. 

� Weak Solution for the Total Momentum 

Numerical solutions of the Navier-Stokes are expressed first in terms of a weak solution, 

which is in integral form and must be satisfied for all test functions in a certain space. The test 
functions are chosen to convert weak solutions to a matrix in which solutions are obtained at 

nodal points. In our work we use a special weak solution in which the fluid and particle 
equations of motion are combined into a single weak equation of motion, which governs the 

evolution of the total momentum of the system—fluid plus particles; the force F[u] and torque 

T [u] cancel and do not need to be computed. 

Find u, p, U, ω  and satisfying 
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� �u �
� u �� u � g� � vdx

fluid� H f 
�
�
�t �

� � p �� v dx � � 2DD[u] :D[v]dx (II.6) 
fluid fluid 

� dU � dω
�M � � g� �V � I � ξ � 0 all for Vv, , ξ, 

� dt � dt 

� q �� u dx � 0 all for q , (II.7) 
fluid 

where u and v are both required to satisfy the no-slip condition on the particle boundary: 

u � U �ω 	 r v � V � ξ 	 r . (II.8) 

The function spaces for the functions and test functions are described in papers where they 
are used. 

The combined equation of motion (II.6), (II.7) and (II.8) in which hydrodynamic forces and 
torques are completely eliminated was introduced by Hesla 1991 and implemented first by Hu 
1996. 

The same type of methods can be used for viscoelastic liquids; of course the equations for the 
fluid motion are then different. For the Oldroyd-B fluids we have 

du
H ��� p � div τ (II.9) f 

dt 

� �

� τ� τ � ( 2 D[u]� � [u]D ) (II.10) D
1 2 

where 

� o 
o o o o) ( �

� ) ( 
� �u �� � ) ( ��u � ) ( � ) ( �� u 

T (II.11) 
�t 

is called the “upper convected derivative.” Here �1, is a relaxation time and �2 is a retardation 

time. Newtonian fluids are recovered in the asymptotic limit �2 ��1, 0 � �2 � �1. It is convenient 
for simulation to write 

E 
] [ (II.12) τ � τ � 2 D uD

where 

�

uDτ � � τE � 2 D
E 

] [ . (II.13) 
E 1 

This leads to a formulation (III.1) of the problem in terms of the configuration tensor 

�D �
E

A � τ � � �E � �
1 �
�1 . 
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III. Numerical Packages for Moving Particles in Direct Numerical 

Simulation 

We developed two different kinds of numerical packages, called “particle movers,” one 

based on body fitted moving unstructured grids and another based on fixed structured grids over 
which bodies move by a method involving a system of Lagrange multipliers. Several different 
versions of each kind of code have been developed and tried on a variety of applications. 

� ALE Particle Mover 

Direct simulation of the motion of solid particles in fluids can be said to have started in the 
paper of Hu, Joseph and Crochet 1992a. The first method Hu et al 1992a uses an implicit update 

of the particle translational and angular velocities on unstructured grids (see figure III.1) to 
prevent numerical instability. This is achieved by alternately computing the hydrodynamic force 

and torque, then updating the particle translational and angular velocities using the equations of 
rigid-body motion, and iterating until the translational and angular velocities converge. The 

combined equations of motion (II.6, 7, 8) were used in Hu’s improved ALE scheme Hu 1996a, 
2000 and Hu, Patankar and Zhu 2000. 

The ALE particle mover uses a generalization of the standard Galerkin finite-element method 

on an unstructured body-fitted mesh, together with an Arbitrary Lagrangian-Eulerian (ALE) 
moving mesh technique to deal with the movement of particles (see, for example Hansbo 1992, 

Huerta and Liu 1988, Nomura and Hughes 1992). In our implementation, the nodes on a particle 
surface are assumed to move with the particle. The movement of the nodes in the interior of the 

fluid is computed using a modified Laplace’s equation, to ensure that they are smoothly 
distributed. At each time step, the grid is updated according to the motion of the particles. A new 

grid is generated whenever the elements of the mesh get too distorted, and the flow fields are 
projected onto the new grid. 

The weak formulation of the ALE particle mover is based on (II.6, 7 and 8). These equations 

are reduced to algebraic equations by finite element methods on the unstructured grid like that in 
figure III.1. The strong form of these equations are the original equations (II.1 through 5) from 

which the weak form was derived. 

Two versions of the ALE method are the integrated method introduced by H. Hu 1996a, and 

a splitting method implemented by H. Choi 2000. In the integrated method one solves for the 
velocity and pressure at the same time; in the splitting method one solves sequentially separate 
equations for the velocity and pressure. 

The splitting method leads to a smaller system of equations than the integrated method; 
however, the divergence free condition is not enforced at every sequential step so that the 

velocity field which emerges from a divergence free step does not satisfy the momentum 
equation exactly; hence small time steps are required to solve the momentum equations with 
negligible error. 
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Figure III.1 Unstructured grid for the ALE method on a periodic domain. 

The splitting method generates a symmetric saddle point matrix and leads to a symmetric 

positive definite pressure equation. The pressure gradient is solved by a conjugate gradient 
method without preconditioning because the matrixes involved are a composition of diagonally 

dominant matrices and other matrices conveniently formed with diagonal preconditioners. The 
methods run matrix-free of assembly of a global matrix. 

� A Projected Particle Mover 

Matt Knepley developed a variation of the ALE particle mover, Knepley, Sarin, Sameh 1998, 
in which the entire simulation is performed matrix-free in the space constrained to be discretely 

incompressible. Apart from the elegance of this approach, it simplifies the model by treating the 
particles and fluid in a decoupled fashion, and by eliminating pressure. The parallel multilevel 

preconditioner due to Sarin and Sameh 1998a, is used to obtain an explicit basis, Pv, for the 
discrete constrained divergence-free space. After elimination of pressure unknowns, a Krylov 

T ~ ~

subspace method such as GMRES is used to solve the reduced system P A P 
v 

b x , where A is 
v 

the constrained Jacobian for velocity unknowns. In contrast to the ALE particle mover discussed 

earlier, the linear systems in this method are positive-definite, and exhibit favorable convergence 
properties on account of the well-conditioned basis Pv. The algorithm has demonstrated very 
good scalability and efficiency for particle benchmarks on the SGI Origin 2000. 

� DLM Particle Mover 

The DLM particle mover uses a new Distributed-Lagrange-Multiplier-based fictitious-
domain method. The basic idea is to imagine that fluid fills the space inside as well as outside the 

particle boundaries. The fluid-flow problem is then posed on a larger domain (the “fictitious 
domain”). This larger domain is simpler, allowing a simple regular mesh to be used. This in turn 

allows specialized fast solution techniques. The larger domain is also time-independent, so the 
same mesh can be used for the entire simulation, eliminating the need for repeated remeshing 

and projection (see figure III.2). This is a great advantage, since for three-dimensional particulate 
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flow the automatic generation of unstructured body-fitted meshes in the region outside a large 

number of closely spaced particles is a difficult problem. In addition, the entire computation is 
performed matrix-free, resulting in significant savings. 

The velocity on each particle boundary must be constrained to match the rigid-body motion 
of the particle. In fact, in order to obtain a combined weak formulation with the hydrodynamic 

forces and torques eliminated, the velocity inside the particle boundary must also be a rigid-body 
motion. This constraint is enforced using a distributed Lagrange multiplier, which represents the 

additional body force per unit volume needed to maintain the rigid-body motion inside the 
particle boundary, much like the pressure in incompressible fluid flow whose gradient is the 
force required to maintain the constraint of incompressibility. 

The scheme uses an operator-splitting technique for discretization in time. (Operator-splitting 
schemes have been used for solving the Navier-Stokes equations by many authors, starting, to 

our knowledge, with Chorin, 1967, 1968, and 1973, and Teman, 1997.) The linearly constrained 
quadratic minimization problems which arise from this splitting are solved using conjugate-

gradient algorithms, yielding a method that is robust, stable, and easy to implement. For further 
details, see Glowinski, Pan, Hesla, Joseph and Périaux 1999. The immersed boundary method of 

Peskin and his collaborators, Peskin 1997, 1981, Peskin and McQueen 1980, on the simulation of 
incompressible viscous flow in regions with elastic moving boundaries also uses a fictitious-
domain method, but without Lagrange-multipliers. 

The rigid motion constraint has been implemented in two ways leading to two codes, DLM1 
and DLM2. The first implementation DLM1 Glowinski, Pan, Hesla and Joseph 1999 requires 

that the fluid at the places P(t) occupied by the solid take on a rigid body velocity 

� ) ( DLM1 xu , t �� U �ω 	 r, x� t P 

where U is the velocity of the mass center and ω 	 r is the rotation around the mass center. The 

second implementation DLM2 Patankar, Singh, Joseph, Glowinski and Pan 2000 is stress-like, 
rigid motion on P(t) is enforced by requiring that the rate of strain vanish there 

DLM2 D� � ) ( u � , 0 x � t P 

where D[u] is the symmetric part of �u. 
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Figure III.2 Fixed triangular grid used in DLM computation. The same grid covers the fluid and 

solid. The fluid in the circles is bordered by Lagrange multipliers to move as a rigid body. 

� Parallel Implementation 

The DLM particle mover uses an operator-splitting technique consisting of three steps. In the 

first step, a saddle-point problem is solved using an Uzawa/conjugate-gradient algorithm, 
preconditioned by the discrete analogue of the Laplacian operator with homogeneous Neumann 

boundary conditions on the pressure mesh; such an algorithm is described in Turek 1996. The 
second step requires the solution of a non-linear discrete advection-diffusion problem that is 

solved by the algorithm discussed in Glowinski 1984. The third step solves another saddle-point 
problem using an Uzawa/conjugate-gradient algorithm. 

The DLM approach uses uniform grids for two and three-dimensional domains, and relies on 

matrix-free operations on the velocity and pressure unknowns in the domain. This simplifies the 
distribution of data on parallel architectures and ensures excellent load balance (see Pan, Sarin, 

Glowinski, Sameh and Périaux 1999). The basic computational kernels, vector operations such 
as additions and dot products and matrix-free matrix-vector products, yield excellent scalability 
on distributed shared memory computers such as the SGI Origin 2000. 

The main challenge in parallelization is posed by the solution of the Laplacian for the 
pressure mesh that functions as a preconditioner for the Uzawa algorithm. Fast solvers based on 

cyclic reduction for elliptic problems on uniform grids are overkill since the solution is required 
only to modest accuracy. A multilevel parallel elliptic solver, Sarin and Sameh 1998b, has been 

incorporated into the DLM algorithm. This has yielded speedup of over 10 for the 
preconditioning step on a 16 processor Origin. 

The parallel DLM particle mover has been used to simulate the expansion of a fluidized bed 
discussed in chapter VII. Even though there is a serial component of the code, we have observed 

an overall speedup of 10 on the SGI Origin 2000 at NCSA, using 16 processors. In addition, this 
represents an impressive eight-fold increase in speed over the best serial implementation. 
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� Viscoelastic DLM Particle Mover 

The ALE particle mover has been implemented for the popular Oldroyd-B constitutive 
model, which can be written in the form 

� �u �
� �u �� �u� � ��p � �� 2 ( DD � A) ,H f �

� �t �

�� u � , 0 (III.1) 

� �A T � DE� �u �� �A � A �� u �� u �A� � A � 1�
1�
� �t � �

1 

where D is the rate-of-strain tensor, A � J
E 
� ) / ( 

1
1 is the configuration tensor, JE is theD �

E 

elastic stress, DE is the elastic viscosity, and �1 is the relaxation time. These equations are to be 
solved subject to appropriate boundary conditions. 

The system (III.1) is classified mathematically as being of composite type, Joseph 1990a: 
The solution can have large gradients normal to the characteristic surfaces, which for this system 

are tangent to the streamlines. A numerical error in resolving these sharp gradients can cause one 
or more of the principal values of A, which are always positive in the continuous problem, to 

become negative. This can cause a catastrophic amplification of short waves—a Hadamard 
instability, Singh and Leal 1993. 

This Hadamard instability can be prevented by ensuring that A remains positive-definite 

using a method introduced by Singh in Singh and Leal 1993, Singh and Leal 1994. The method 
has two key elements: a third-order upwinding scheme for discretizing the convection term in 

(II.10) and a time-dependent solution algorithm which explicitly forces the principal values of A 

to be positive. The combination of these two elements ensures that the scheme will remain stable 

even at relatively large Deborah numbers. The equations are discretized in time using a second-
order operator-splitting technique that decouples the constitutive equation from the 

incompressibility constraint. Singh, Joseph, Hesla, Glowinski and Pan 2000 have combined 
Singh’s with the DLM method. 

� Computation domains for pipe flows of slurries 

In studying slurries and other pipe flows it is necessary to set the computational problem on a 

finite domain. It would be desirable to pose the problem as it is in nature using the end 
conditions. The problem posed this way requires knowledge of end conditions and the details of 

the motion may not determine the motion in the pipe, especially in long pipes. This same 
problem occurs in analysis of pipe flows in which a constant pressure gradient is prescribed as 

the ratio of the pressure drop �p over the length L of pipe. The prescription of that constant 

pressure gradient is the only way in which the pressure drop is acknowledged. In analytical 
studies, the remaining nonconstant part of the pressure gradient can be posed in a suitable class 

of functions, say periodic in x. We could write 

) , , , ( � Px 2� ) , , , ( (III.2) z y x p t z y x t 
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where P is the constant pressure gradient and F ) , , , ( is periodic with an assigned period in z y x t 

x. There are possibly different ways to choose this period and they are not equivalent. This is 

exactly where we are in simulation. We decompose the pressure as in (III.2), then we require that 

� and the velocity and other quantities are periodic in x with an assigned period. The assignment 
of the period is made decisively by the construction of a periodic mesh like the one shown in 

figure III.1. Clearly anything we compute on this mesh will have the assigned periodicity. The 
choice of periodicity and the selection of the period does cloud the relevance of computed to 
observed results and needs further study. 

Simulations of single particle lift to equilibrium were also performed in a computational 
domain, which moves in the x-direction and is such that the particle is always at its center. The 

inflow and outflow boundaries are located at a specified distance from the center of the particle. 

A fully developed parabolic velocity profile u(y) =�py(W - y)/2D corresponding to the applied 
pressure gradient is imposed at the inflow and outflow boundaries. 

� Collision Strategies 

It is not possible to simulate the motion of even a moderately dense suspension of particles 
without a strategy to handle cases in which particles touch. In unstructured-grid methods, 

frequent near-collisions force large numbers of mesh points into the narrow gap between close 
particles and the mesh distorts rapidly, requiring an expensive high frequency of remeshing and 

projection. A “collision strategy” is a method for preventing near collisions while still conserving 
mass and momentum. 

Four collision strategies are presently being used. They all define a security zone around the 

particle such that when the gap between particles is smaller than the security zone a repelling 
force is activated. A repelling force can be thought to represent surface roughness, for example. 

The repelling force pushes the particle out of the security zone into the region in which fluid 
forces computed numerically govern. The strategies differ in the nature of the repelling force and 
how it is computed. It is necessary to compare these different strategies. 

A collision strategy for the ALE particle mover used by Hu 2000 chooses the repelling force 
so that the particles are forced just to the edge of the security zone. Another strategy for the ALE 

particle mover, due to Maury and Glowinski 1997, uses the lubrication force of Kim and Karrila 
1991, to separate touching particles and it is also the only strategy that requires touching particles 

to transfer tangential as well as normal momentum. Maury and Glowinski developed his theory 
for smooth bodies of arbitrary shape. 

A yet different collision strategy has been implemented for the DLM particle mover, 

Glowinski, Pan, Hesla and Joseph 1999. As in the other methods a security zone is defined. An 
explicit formula, linear in the distance of penetration into the security zone, is used to keep the 

particles apart. This repelling force may be tuned with a “stiffness” parameter. 

Johnson and Tezduyar 1996, implemented a collision strategy based on the physics of 

inelastic collisions in which a security zone is defined by structured layers of elements around 
the particles. They model their strategy as an inelastic collision of elastic bodies with no fluid 

present and use the coefficient of restitution as a fitting parameter. The collision strategy is 
activated when the structured layers touch. 
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All of these strategies keep the particles farther apart than they ought to be, resulting in too 

high void fractions. To have real collision of smooth rigid particles it is necessary for the film 
between particles to rupture and film rupture requires physics and mathematics beyond the 

Navier-Stokes equations. Without film rupture physics, the best that can be expected from 
simulation is a strategy that allows for the action of lubrication forces to within the tolerance of 

the mesh. 

This kind of "security zone free" scheme has been devised and implemented by Singh, Hesla 

and Joseph 2002. They modify the DLM method to allow the particles to come arbitrarily close 
to each other and even slightly overlap. When conflicting rigid body constraints from two 

different particles are applicable on a velocity node, the constraint from the particle that is closer 
to that node is used and the other constraint is dropped. An elastic repulsive force is applied 

when the particles overlap. The particles are allowed to overlap as much as one hundredth of the 
velocity element size. 

The modified DLM method was applied for both Newtonian and viscoelastic liquids. 

Excellent results for particles in close approach and validation against analytical results were 
achieved. 
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A. Addendum to Chapter III (Addendum A).  Experiments on particle collisions in 
viscous liquids; Stokes number 
 

The physics of collisions is thought to correlate with the Stokes number 
  

Stk =
mv0

6πa2µ
=

1
9
ρp

ρ f

Re  

 
here defined for a sphere of radius a, where v0  is the velocity of the sphere and 

m =
4
3
πa3ρp  is its mass and 

fv
a 0v2

Re =  is the Reynolds number.  The effects of particle 

momentum mv0,  collisions and rebound after collision are more important when Stk is 
larger.  In simulations, collisions which trigger an elastic repulsive force require this 
selection of a coefficient of restitution, which is the ratio of the velocity before and after 
impact. G. Joseph et al 2001, 2004, in the laboratory of Melanie Hunt, have done 
experiments which clarify this point:  
 

• G. G. JOSEPH, R. ZENIT, M. L. HUNT AND A. M. ROSENWINKEL.  PARTICLE-WALL COLLISIONS IN A 
VISCOUS FLUID, J. FLUID MECH. 433, 329-346 (2001). 

• G. G. JOSEPH AND M. L. HUNT. OBLIQUE PARTICLE-WALL COLLISIONS IN A LIQUID.  J. FLUID MECH. 
510, 71-93 (2004). 

 
 
(Prior literature on this topic can be found in the reference list of these two papers).  They 
find that 
 

• For a particle colliding with a wall in a viscous fluid, the coefficient of restitution 
(the ratio of the velocity just prior to and after impact) depends on the impact 
Stokes number (defined from the Reynolds number and the density ratio) and 
weakly on the elastic properties of the material. 

• There exists a critical value for the Stokes number below which rebound does not 
occur.  This value is higher than the value predicted from hydrodynamics for zero 
impact velocity. 

• The slowdown of a particle prior to impact as it approaches a wall can be 
computed from hydrodynamic theory to a good approximation 

• Oblique collisions in a fluid obey the same laws as oblique collisions in a dry 
system.  However, the effective coefficient of friction at the point of contact is 
drastically reduced due to lubrication effects.  

 
Stated in another way, these experiments have shown that the elastic properties of the 
particles and walls do not have a significant effect on the measured coefficients of 
restitution.  For a particle colliding with a wall in the normal direction, a deceleration was 
observed due to the presence of the wall at Stokes numbers lower than approximately 70, 
with rebound ceasing at approximately 10.  The distance from the wall at which the 
particle commences to decelerate increases with decreasing Stokes number.  For Stokes 
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numbers above 70, there is no apparent deceleration and above about 2000, the fluid 
effects can be neglected.  For numerical studies of solids in liquids, the forces arising 
from lubrication are vastly more important than those arising from elasticity. 
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IV. Weak and Strong Formulations of the DLM Method 

The weak and strong forms of the equations for the DLM method are more interesting 

because the Lagrange multiplier field must be introduced. There are two ways to represent the 
rigid motion of a fluid in portions of the space occupied by solids; one way is to impose the 

condition that the velocity is given by the velocity of the mass center plus a rigid rotation, and 
the other is that on those portions of space, the rate of strain tensor vanishes. This gives rise to 
two versions of the DLM method: a body force formulation and a stress formulation. 

� Body Force Formulation of DLM Method; Weak Solution 

Find u, p, Uλ, and ω  satisfying 

� �u �
� �u �� �u � g� � v dx� H f 

�
�
�t �

D:u � �dx- � p �� v dx � � 2DD � � v 

9 9

� H
f �� � dU �

+ ��1� ����M � � g��V �
d(Iω �ξ) �

� d t � d t �� H
s ��

H, 1( 9 p), 

= � λ � �v � �V � ξ � r ��dx , for all u,v in H1(�), p and � in L2(�), U, M, V, ξ in R
3 

(IV.1) 
9

s

�q �� u dx � 0 , q � H1(�) (IV.2) 
9

s 

�µ � �u � �U �ω� r ��dx , � � L2(�)  (IV.3) 
9

s 

Here xλ t),( is the Lagrange multiplier field, u, p, λ, U and ω are the unknown velocity, 

)( and ω t ,pressure, U t )( are the velocity and angular velocity; ξVv, and µ  are the test 

functions, 9  is the domain occupied by solids, and ��� �� is the domain occupied by
s f s 

both fluid and solid, the entire domain shown as triangles in figure III.2. 

� Body Force Formulation of DLM: Strong Solutions 

Using standard methods of the calculus of variations, we obtain the strong form of the DLM 
equations of motion and constraint in fluids and solids. We get the Navier-Stokes over the whole 
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domain 9 but the Lagrange multiplier field appears only on the solid. We find that div u � 0 on 

fluid and solid and 

du
H � H g ��� σ � λ@ ��s � (IV.4)f f

d t 

� � is the stress. Herewhere @ �9 �  is one when x 9�  and zero otherwise and σ �� p1� 2D uD
s s 

2
λ � a

2 
� λ  is a body force. The solid is in rigid motion 

u � U �ω 	 r (IV.5) 

λ  satisfies a natural boundary condition 

�n �� �λ � n � �σ � σ � (IV.6)s f 

evaluating (IV.4) in 9 , we find f 

div u � 0 , 

du 
H � H g �� p �D�

2 
u (IV.7)f f

d t 

in 9  and from (IV.5), using no-slip, we get f 

u � U �ω 	 r   on �� f . (IV.8) 

Equation (IV.7) and (IV.8) are a Dirichlet problem when U and ω  are given and the 

boundary of the particles defining �� are known; if all these “given” were known as a function f 

x tof time we could solve any initial value problem in 9  without reference to λ ) , ( .f 

Using (IV.5) to evaluate (IV.4) on the solids 9
s 
 we get 

� dU dω �
� � r �ω � �ω � r �� g� � λ . (IV.9)H f �

� d t d t �

Since there is no divergence constraint for λ we may put the pressure p in the solid to zero 

and, of course, D� �� 0 on rigid motions, and u 

� ��n (IV.10)�n �� �λ � pn � 2D uD

where p and u are the values of these fields in the fluid on the �� of the solids. Once the fluid f 

flow associated with (IV.7,8) is solved, the right side of (IV.10) is known and the linear equation 

(IV.9) may be solved for λ . The λ  field is selected to make the fluid on the domain 9
s 
occupied 

by solids move as a rigid body. 
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In the weak solution, the position of 9
s 

) (  are updated using Newton’s equations (II.3) rigid t 

bodies. The form of the equations (II.3) is specialized for spheres; for arbitrary shape Newton’s 

equations of motion are more complicated. 

� Stress Formulation of DLM: Weak Solutions 

Patankar, Singh, Joseph, Glowinski and Pan 2000 have introduced a new formulation of the 
distributed Lagrange multiplier/fictitious domain method for particulate flows. In this 

formulation the deformation rate tensor in the fluid occupied by solids is constrained to be zero. 
The Lagrange multiplier field λ  turns out to be a velocity and the mathematics gives rise to a 

stress like equation for λ in which the particle phase pressure may be put to zero. 

The new formulation starts with the observation that on a rigid solid 

D� �� 0 (IV.11)u 

and a partial differential equation equivalent to (IV.11) is 

u u�� D� �� 0 in 9  and D� ��n � 0 on �� . (IV.12)
s s 

The combined form of the total momentum equation is formulated as follows: 

,Find u, p, Uλ and M satisfying 

� �u �
u v� �u �� �u � g� � v dx � � 2DD� �: D� �dx � � p� �� v�dx � � q� �� u�d x� H f 

�
�
�t � 9 9 9

� �u � � �: vD � �: µD+ � �H � H f �� � �u �� �u � g� � v dx + � λD � �dx � � uD � �d x � 0 (IV.13)s 
� �t9 � 9 9

s s s 

and 

MU � � H u dx 
s 

9
s 

Iω � � r x H ud x . (IV.14)
s 

9
s 
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� Stress Formulation of DLM: Strong Solutions 

The strong form for (IV.13) may be found by the usual method of the calculus of variations. 

In 9 , we have div u=0,f 

du 
H ��� p ��

2 
u � H f g . (IV.15)Df 

dt 

In 9 , div u=0, D[u]=0 and 
s 

du
� � . (IV.16)H � ��p �D�

2 u � H
s 
g ��� λD

s 

d t 

The velocity and stress traction vectors are continuous across �� ���s f 

� 1 ps 1 2D uD
f 

u �� n � λD , 
(IV.17)

�n p f s 

u u .
f s 

Noting next that (IV.5) holds in 9
s 

and on �� , we arrive again at the Dirichlet problem 
s 

(IV.7) and (IV.8) for the Navier-Stokes equation in 9 . After putting u � U �ω 	 r  into f 

(IV.16) and evaluating (IV.17), we get 

� dU dω �
�� ( λD� �) � H

s 
� � � r �ω � �ω � r�� g� (IV.18)
� d t d t �

� � � n � �� p1� 2D uDn � λD � �� . (IV.19)s f 

tThis is a linear Dirichlet problem for λ  when U(t), ω ) ( and the position of X  and G of the 

particles. This data determines u and p in 9  through (IV.15) (or (VI.7)) and (IV.8). f 

� �  is the rate of strain for the Lagrange multiplier velocity field λ  in 3D and three λD

equations (IV.18). It is not required that div λ � 0 ; in general div λ 	 0 . Hence a “pressure” 

field is not associated with λ  field. We might frame this result for two-fluid models of solid-
liquid flow which states the particle phase pressure vanishes. 
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B. Addendum to Chapter IV (Addendum B). Weak form of the body force 
formulation when the Lagrange multiplier is eliminated 

 
 
Using equation (IV.9) and (IV.10), we may eliminate λ  in the weak solution. 
 

dx
s

))(( rξVvλ ∧+−•∫
Ω

 

= dx
s

f ))(())(( rξVvgrωωrωU ∧+−•−∧∧+∧+∫
Ω

••

ρ     (IV.20) 

 
where  
 

dt
dUU =

•

, 
dt
dωω =

•

. 

 
Noting now that ss Ω∪ΩΩ=Ω / , where fs Ω=ΩΩ /  is the part of Ω  occupied by the 
fluid alone, we may write (IV.1), using (IV.20) as 
 

dxp
tf

f

}][][2])([{ vvD:uDvguuu
•∇−+•−∇•+

∂
∂

∫
Ω

ηρ  

dx
t

s

f vrωωrωUuuu
•∧∧−∧−−∇•+

∂
∂

+
••

Ω
∫ )]()([ρ  

])()()[1( ξIωVgU •+•−−+
•

dt
dM

s

f

ρ
ρ

 

0)(])([ =∧+•−∧∧+∧++ ∫
Ω

••

s

dxf rξVgrωωrωUρ ,    (IV.21) 

 
where  
 

∫
Ω

⊗−=
s

dxrs ][ 2 rr1I ρ   

 
is the moment of inertia tensor. 

 
The position vector r  is measured from the mass center of the particle. Since sρ  is 
uniform, the volume and mass centers are identical and 

 
 
 

I’m indebted to Todd Hesla for his help with the reduction of the weak to strong solution and some of the calculations 
leading to (IV.25). 
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∫
Ω

=
s

dx 0r           (IV.22) 

 
where )(tXxr −=  and X  is the center of mass. 

 
Using (IV.22), we may simplify and rewrite the last term of (IV.21) as 
 

∫∫
Ω

•

Ω

•

∧∧∧+∧+•− dxdx ff

s

))](([)( rξrωωrωVgU ρρ .  

 
Noting next that ∫

Ω

=
s

dxM sρ , the terms proportional to V  in (IV.21) are 

 

VgU •−
•

][M   
 

and the terms proportional to ξ  become 
 

dx
dt
d

f
s

f ))](([)()1( rξrωωrωξIω ∧∧∧+∧+•− ∫
Ω

•

ρ
ρ
ρ

 

 
which, after applying well known vector identities, becomes 

 

∫
Ω

••

•∧•+•−+•−
s

dx
dt
d

f
s

f ξωrrωrωrωrξIω )]()([)()1( 2ρ
ρ
ρ

 

 
or 

 

ξIωωξωIξIω •∧+•+•−
•

)()()()1(
s

f

s

f

s

f

dt
d

ρ
ρ

ρ
ρ

ρ
ρ

.    (IV.23) 

 
We note next that 
 

∫
Ω

•

•−•−•+=
s

dx
dt
d

dt
d

dt
d

dt
d

s ])()()([)( rrωrrωrrωωIIω ρ . 

 
Since 

 

rωrωUXXxrωUr
∧=∧++−=−∇•∧++

∂
∂

=
•

)](][)([ t
tdt

d , 

 
this reduces to 
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)()( IωωωIIω ∧+=
•

dt
d .        (IV.24) 

 
After inserting (IV.24) into (IV.23), all of the terms except dtd /)(Iω•ξ  vanish. The 
terms proportional to V  and ξ  in (IV.21) therefore simplify drastically to 

 

ξIωVgU •+•−
•

)(][
dt
dM .  

 
The reformulated statement of the weak form of our solid liquid system is obtained 

after eliminating λ  from (IV.1) by the method just given. The combined momentum 
formulation, fluid plus solid, is 

 

dxpdx
t

ff

f }][][2{])([ vvD:uDvguuu
•∇−+•−∇•+

∂
∂

∫∫
ΩΩ

ηρ  

dx
t

s

vrωωrωUuuu
•∧∧−∧−−∇•+

∂
∂

+
••

Ω
∫ )]()([ρ  

0)()( =•+•−+
•

ξIωVgU
dt
dM ,       (IV.25) 

 
where the test functions 31 )(Ω∈Hv  and 3R∈V  and 3R∈ξ  are vectors. The integral on 

sΩ  guarantees that the momentum on of the patches of fluid sΩ  on places occupied by 
the solids is for a rigid body motion. The fluid is weakly solenoidal 

 

∫
Ω

=•∇ 0dxq u  , )(2 Ω∈ Lq  

 
and the condition 

 
0))](([ =∧+−•∫

Ωs

dxrωUuµ , 31 )(Ω∈Hµ  

 
guarantees that the fluid moves as a rigid body. 
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C. Addendum to Chapter IV (Addendum C). Recent Developments in Direct Numerical 
Methods for Solid-Liquid flows 
 

The method of direct simulation of solid-liquid flow has become very popular since 
the first edition of this book in 2002.  Here, I am going to give a short synopsis of some 
of the main developments since 2002.  These may be characterized as 

 
(1) Extensions of DLM to different element bases 
(2) Fast DLM methods based on quick generation of rigid body motions by “averaging” 

fluid motions 
(3) Explicit methods avoiding Poisson equations for the pressure using an equation of 

state for weak compressibility 
 
My book is not a source for the computational methods used to implement direct 

simulation.  These methods are described in papers cited throughout the book.  For good 
thorough reviews of the technical CFD issues confronting researchers, I recommend the 
following papers.  The ALE method and applications is treated by 

 
• H. HU, N. A. PATANKAR AND M. Y. ZHU.  DIRECT NUMERICAL SIMULATIONS OF FLUID-SOLID SYSTEMS 

USING THE ARBITRARY LAGRANGIAN-EULERIAN TECHNIQUE.  J. COMP. PHYSICS, 169, 427-462 (2001) 
 
The DLM method and applications is treated by 
 
• R. GLOWINSKI.  FINITE ELEMENT METHODS FOR INCOMPRESSIBLE VISCOUS FLOW.  IN PART 3 HANDBOOK 

OF NUMERICAL ANALYSIS, IX, NORTH-HOLLAND, AMSTERDAM (2003) (ED. P. G. CIARLET AND J. L. 
LIONS). 

 
Fast computation methods are discussed in  
 
• N. SHARMA AND N. PATANKAR.  A FAST COMPUTATION TECHNIQUE FOR THE DIRECT NUMERICAL 

SIMULATION OF RIGID PARTICULATE FLOW.  J. COMP. PHYS. (2004). 
• N. PATANKAR.  A FORMULATION FOR FAST COMPUTATION OF RIGID PARTICULATE FLOW.  CENTER FOR 

TURBULENCE RESEARCH ANNUAL REPORT, STANFORD 185-196 (2001). 
 
(1) Extension of DLM to different element bases 

 
Even more recent advances in the DLM method are given in the papers listed below. 

  
Extension of DLM calculations from finite element to spectral element bases were 
carried out and applied by 
 

• S. DONG, D. LIU, M. MAXEY, G. KARNIADAKIS.  SPECTRAL DISTRIBUTED LAGRANGE MULTIPLIER 
METHOD: ALGORITHM AND BENCHMARK TESTS.  J. COMP. PHYSICS, 195, 695-717 (2004). 

 
Abstract: We extend the formulation of the distributed Lagrange multiplier (DLM) approach for particulate 
flows to high-order methods within the spectral/hp element framework.  We implement the rigid-body motion 
constraint inside the particle via a penalty method.  The high-order DLM method demonstrates spectral 
convergence rate, i.e. discretization errors decrease exponentially as the order of spectral polynomials increases.  
We provide detailed comparisons between the spectral DLM method, direct numerical simulations, and the force 
coupling method for a number of 2D and 3D benchmark flow problems.  We also validate the spectral DLM 
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method with available experimental data for a transient problem.  The new DLM method can potentially be very 
effective in many-moving body problems, where a smaller number of grid points is required in comparison with 
low-order methods. 
 
Extension of DLM calculations from finite element to finite-difference bases were 
carried out and applied by 
 

• Z. YU, N. PHAN-THIEN AND R. TANNER.  DYNAMIC SIMULATION OF SPHERE MOTION IN A VERTICAL 
TUBE.  J. FLUID MECH, 518, 61-93 (2004). 
 

They did a very thorough study and obtained results in uniformly good agreement with 
experiments.  This paper treats sedimentation of a single sphere in tube flow.  The 
migration problem was considered by Yang et al (2005) for a neutrally buoyant using 
both ALE and DLM methods (see addendum).  Their results agree with those of Yu, 
where they overlap.  Yu et al 2004 gave correlations for their results like those proposed 
earlier in various papers from our group but they get all their results from unconstrained 
rather than constrained simulations used to generate correlations in the work of Yang et 
al.  The two papers mentioned here were done independently.  The stress formulation of 
the DLM method in strong form has been implemented in the animation work of 
 
• M. CARLSON, P. MUCHA AND G. TURK.  RIGID FLUID: ANIMATING THE INTERPLAY BETWEEN RIGID 

BODIES AND FLUID.  CONFERENCE PROCEEDINGS ACM TRANSACTIONS ON GRAPHICS, 23, 377-384 (2004). 
 

Abstract: We present the Rigid Fluid method, a technique for animating the interplay between rigid bodies and 
viscous incompressible fluid with free surfaces. We use distributed Lagrange multipliers to ensure two-way 
coupling that generates realistic motion for both the solid objects and the fluid as they interact with one another. 
We call our method the rigid fluid method because the simulator treats the rigid objects as if they were made of 
fluid. The rigidity of such an object is maintained by identifying the region of the velocity field that is inside the 
object and constraining those velocities to be rigid body motion. The rigid fluid method is straightforward to 
implement, incurs very little computational overhead, and can be added as a bridge between current fluid 
simulators and rigid body solvers.  Many solid objects of different densities (e.g., wood or lead) can be combined 
in the same animation. 
 

The goal of their work focuses on computer generated animation.  Their research follows 
most closely the DLM work of Patankar et al 2000 and especially of the fast method of 
Patankar 2001. They program the equations in strong form using finite differences rather 
than finite elements.  They apply their formula to several rigid bodies and not just to 
spheres and their animations include free surfaces which are computed using the method 
of level sets.  Their paper is well organized and easy to follow.   
 
(2) Fast DLM methods 
 

N. Patankar 2001, introduced a fast method for producing rigid motions on the places 
Ωs  occupied by solids.  His method is motivated by the Lagrange multiplier formulation 
and can be expressed in this frame.  However, in the actual implementation the 
multipliers are not seen.  Roughly, the computation proceeds as if there were no rigid 
bodies.  Then the places Ωs  occupied by these bodies are identified and on them we can 
assure that D[u] = 0  if the velocity u = v  of the mass center of the rigid body and 
angular velocity ω of the body around its mass center is selected as averages satisfying 
the principles of conservation of linear and angular momentum 
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Mv= ρpu ⋅dΩsΩs
∫  

and 

∫Ω Ω⋅×=
s

sp duxIω ρ . 

 
The rigid motion ur = v + x × ω  does not match the fluid velocity at every point on Ωs 

but this discontinuity is corrected in Patankar’s scheme and the correction is smeared on 
the length scale of the grid size. 
 

A different fast method for the body force formulation of DLM has been given by 
 

• R. GLOWINSKI, T. PAN, T. HESLA, D. JOSEPH AND J. PÉRIAUX.  A FICTITIOUS DOMAIN APPROACH TO THE 
DIRECT NUMERICAL SIMULATION OF INCOMPRESSIBLE VISCOUS FLOW PAST MOVING RIGID BODIES: 
APPLICATION TO PARTICLE FLOW.  J. COMP. PHYSICS, 169, 363-426 (2001). 

 
A misprint in the fast method equations (7.33) and (7.34) in this paper was corrected in 
Glowinski (2003). (see pages 724-726) 

 
A comparison of the stress based DLM fast algorithm of Sharma and Patankar (2004) 

and the body force based DLM fast algorithm of Glowinski et al (2001, 2003) is given in 
the paper of Sharma and Patankar. 
 
(3) Explicit methods avoiding Poisson equations for the pressure using an equation 
of state for weak compressibility 
 

A Poisson equation for the pressure  
 

∇2 p = −div[(u •∇)u]  
 

arises from the Navier-Stokes equations for incompressible fluids for which div(u) = 0.   
This is an elliptic problem and it generates difficulties for efficient computation which do 
not arise when the pressure is given by an equation of state.  One method of dealing with 
this problem is to introduce and equation of state for weak compressibility perturbing 
compressibility.  The method of pseudo-compressibility, associated with the names of A. 
Chorin and R. Temam, is well known to CFD experts, but it has not been applied to DNS 
of particulate flow.  The MacCormack scheme is an explicit method for compressible 
fluids.  It is essentially a predictor-corrector scheme, similar to a second order Runge-
Kutta method commonly used to solve ordinary differential equations.  It is very easy to 
program and it runs fast and well, is widely used and is widely respected.   
 
• R. W. MACCORMACK “THE EFFECT OF VISCOSITY IN HYPERVELOCITY IMPACT CRATERING.”  AIAA 

PAPER 69-354, CINCINNATI, OHIO (1969). 
 
Some progress has been made to adapting this scheme to particulate flow in weakly 
compressible fluids. 
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• H. HU AND A. PERRIN.  SIMULATIONS OF PARTICULATE FLOWS USING EXPLICIT MACCORMACK SCHEME.  
IUTAM SYMPOSIUM ON “COMPUTATIONAL APPROACHES TO DISPERSED MULTIPHASE FLOW” ARGONNE 
NATIONAL LABORATORY, ARGONNE OCT 4-7 (2004). 

 
Abstract: Most incompressible flow solvers are implicit.  Large systems of equations are constructed and solved, 
demanding large amounts of memory and special schemes for parallelization.  We can evade these difficulties by 
solving flow problems based on small Mach number compressible Navier-Stokes equations with explicit finite-
differences on a fixed, uniform grid at each time step.  This explicit scheme eliminates the Poisson equation for 
pressure by relating pressure to density through an equation of state, then updating density with the compressible 
continuity equation.  The sound speed in the media imposes a constraint on the time step for the simulation.  We find 
empirically that for moderate Reynolds numbers (up to 200 based on the particle size), the CFL condition (based on the 
sound speed) applies.  
 
Advantages similar to the MacCormack scheme are enjoyed by the Lattice Boltzmann 
method.  This method can be described as a Galerkin approximate method based on the 
Bhatnager, Gross, Krook 1954 (BGK) approximation for the Boltzmann equation.  The 
LBE method is a pseudocompressible method.  Using a method of multiple scales, the 
continuum equations implied by this method derived; these equations are compressible, 
they have an equation of state and they are not the compressible Navier-Stokes equations, 
but are Navier-Stokes like. 
 
See equations (89) in  
 
• R. R. NOURGALIEV, T. N. DINH, T. G. THEOFANOUS AND D. D. JOSEPH 2003.  THE LATTICE 

BOLTZMANN EQUATION METHOD: THEORETICAL INTERPRETATION, NUMERICS AND IMPLICATIONS.  
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW 29, 117-169 (2003).   

 
The LBE method sometimes gives good results for solid-liquid flow because the particles 
move under computed rather than modeled forces.   
 
(4) Hybrid methods 
 

A hybrid method is a numerical method which makes use of results from 
mathematical analysis.  J. Brady’s Stokesian dynamic simulations of particulate flow 
embed analytical results from lubrication theory for near collisions of particles with 
“Stokeslet” representations for far field effects. (See Brady 1993 for a recent review). 

 
Another hybrid method is implemented in Physalis proposed by 
 

• A. PROSPERETTI AND H. N. OGUZ. PHYSALIS: A NEW O(N) FOR THE NUMERICAL SIMULATION OF 
DISPERSE SYSTEMS: POTENTIAL FLOW OF SPHERES. J. COMP. PHYS. 167, 196-216 (2001). 

 
Z. Zhang and A. Prosperetti have recently reported the results of simulations of 
sedimentation of 1024 spheres in a periodic domain at Reynolds numbers of about 40 
(NOV. 21-23, 2004 MEETING OF DFD OF APS IN SEATTLE, WASHINGTON) 
 

Physalis uses an analytical solution in the neighborhood of each particle and matches 
this solution to the external field calculated numerically.  For the sedimentation problem 
the Stokes flow solution is used in the neighborhood of each sphere; locally because of 
no slip, the fluid velocity is nearly zero in the frame of the moving particle.  A boundary 
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layer would reduce the size of the Stokes flow layer at high global values of Re, but the 
use of an analytical solution probably needs fewer mesh points on the sphere than a direct 
method at any Re.  It may be difficult to use this method on solids whose shape does not 
allow a convenient analytical representation. 
 
(5) Colloids and nanoparticles 
 

Brady’s (1993) Stokesian dynamic method has been applied successfully to many 
colloid problems at low global values of Re. 

 
A promising new method which is not restricted to Stokes flow or to random forces 

has been proposed by 
 

• N. SHARMA AND N. PATANKAR.  DIRECT NUMERICAL SIMULATION OF THE BROWNIAN MOTION OF 
PARTICLES USING THE FLUCTUATING HYDRODYNAMIC EQUATIONS.  J. COMP. PHYS. 201, 466-486 (2004). 

 
Abstract: In this paper, we present a direct numerical simulation scheme for the Brownian motion of particles.  
Solving the fluctuating hydrodynamic equations coupled with the particle equations of motion result in the Brownian 
motion of the particles.  There is no need to add a random force term in the particle equations.  The particles acquire 
random motion through the hydrodynamic force acting on its surface from the surrounding fluctuating fluid.  The 
random stress in the fluid equations is easy to calculate unlike the random terms in the conventional Brownian 
dynamics type approaches.  We present a three-dimensional implementation along with validation. 




