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XVI Fluid Dynamics of Floating Particles 

 This chapter takes up a new problem for direct numerical simulation which includes the 

topics of fluid dynamics of heavier-than-liquid floating particles driven to self-assembled 

aggregates by capillary forces. This is a problem of three-phase flow; liquid/gas/solid. The 

material in this chapter is taken from the two papers listed below. Prior literature is found locally 

at the end of the two subsections corresponding to the two papers. 

 
D.D. Joseph, J. Wang, R. Bai, and B.H. Yang, 2003. Particle motion in a liquid film rimming the 
inside of a partially filled rotating cylinder. J. Fluid. Mech., 496, 139-163. 
 
P. Singh and D.D. Joseph, 2005. Fluid dynamics of floating particles. J. Fluid Mech., accepted 
for publication. 
 
 

• Self-aggregation, clustering and bonding of particles in a liquid film 
rimming the inside of a partially filled rotating cylinder 

 

Abstract 

Both lighter- and hydrophobic heavier-than-liquid particles will float on liquid-air surfaces. 

Capillary forces cause the particles to cluster in typical situations identified here. This kind of 

clustering causes particles to segregate into islands and bands of high concentrations in thin 

liquid films rimming the inside of a slowly rotating cylinder partially filled with liquid. A second 

regime of particle segregation, driven by secondary motions induced by off-center gas bubbles in 

a more rapidly rotating cylinder at higher filling levels, is identified. A third regime of 

segregation of bi-disperse suspensions is found in which two layers of heavier-than-liquid 

particles that stratify when there is no rotation, segregate into alternate bands of particles when 

there is rotation*.  

I. Capillary forces 

The deformation of the air-liquid interface due to floating light particles or due to trapped 

heavy small particles gives rise to capillary forces on the particles. These forces may be 

                                                 
* Movies of the experiments reported in this paper can be viewed at the web address 
http://www.aem.umn.edu/research/particles/rtcylinderpaper/ . 



Printed 1/21/2005 12:40:00 PM XVI-2 DDJ/2002/papers/MotionParticles/ChapXVI 

qualitatively understood from simple arguments. Two kinds of forces act on particles: forces due 

to gravity and forces due to the action of contact angles. These two kinds of forces are at play in 

the vertical force balance but require a somewhat more elaborate explanation for horizontal force 

balance. The effects of gravity are usually paramount for heavier-than-liquid floating particles in 

which one particle will fall into the depression of the second. A heavier-than-liquid particle will 

fall down a downward sloping meniscus while an upward buoyant particle will rise. Capillary 

forces cause particles to cluster, as shown in figure 4. 

In this section, we shall review the nature of capillary forces which cause the particles to 

cluster; in section II we show how these forces produce islands and bands of segregated particles 

in a thin liquid film rimming the inside of a slowly rotating cylinder. 

I-1. Vertical forces 

The simplest analysis relevant to understanding the forces on small particles is the vertical 

force balance on a sphere floating on the interface between fluids which, for convenience, is here 

called water and air. This analysis was given first by Princen (1969), then by Rapacchietta and 

Neumann (1977) and by Kotah, Fujita and Imazu (1992), who used the floating ball to measure 

contact angles.  
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Figure 1. Hydrophobic and hydrophilic particles at equilibrium. 

The capillary force Fc , is a function of the radius of particle R, the surface tension 

coefficient γ , the filling angle (position of the contact ring) θc  and the contact angle α (see 

figure 1), given by,  

 Fc = 2π Rsinθc( )γ sin θc − π −α( )[ ]= −2πRγ sinθc sin θc + α( ) (1) 

for both the hydrophobic and hydrophilic cases. 
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To have mechanical equilibrium, the capillary force plus the vertical resultant of pressure 

around the sphere must balance the gravity vertical component, 

 Fc + Fp = G (2) 

where G = 4
3 ρpπR3g  is the weight of the particle, and the vertical resultant of pressure around the 

sphere can be written as  

 Fp = ρlgVw + ρag(V −Vw) − (ρl − ρa )gh2A . (3) 

where ρl  and ρa  are densities of the liquid and the air, respectively; h2  is the depression 

generated by the particle, with positive value in the case shown in figure 1(a) and negative value 

shown in figure 1(b); V = 4
3 πR3  is the volume of the sphere, Vw = πR3 2

3 − cosθc + 1
3 cos3 θc( ) is the 

volume of the sphere immersed in the water and A = π Rsinθc( )2  is the area of the ring of 

contact.  The first two terms at the right hand side of (3) are in agreement with Archimedes’ 

principle, while the last term accounts for the meniscus effect. When a meniscus is present, the 

buoyancy calculated by Archimedes’ principle ρlgVw + ρag(V −Vw )  not only lifts the sphere, but 

also the fluid in the meniscus.  

Inserting (1) and (3) into (2), we get the vertical force balance, 
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 (4) 

where cosθc − cosθ1 = h2 R ��� θ1 is measured from the point of extension of the flat meniscus 

as indicated in figure 1. B = ρlR
2g γ  is the bond number and ψ1 = ρp ρl  and ψ2 = ρa ρl  are the 

dimensionless control parameters. 

It can be inferred from (4) that the left side of the equation, consequently, the right side, lies 

in the range −1≤ sinθC sin θC + α( )≤1. Obviously this equation cannot be solved if the particles 

are too large or too heavy. However, it can be concluded that small hydrophobic particles can 

always be suspended in fluid surfaces no matter how heavy they may be, as long as ρpR2g γ  is 

small enough. Moreover, in the limit of ρpR2g γ → 0, sinθc sin α + θc( )= 0 and the particles sit 

on the top of the fluid or are held in place by capillarity. 
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If the particle is irregular with sharp corners the capillarity argument fails. Liquid-air surfaces 

bind at razor sharp corners; the physics associated with this strong bond are not understood. 

Razor blades and straight pins can float on water-air surfaces pinned at the sharp surface.  

Equation (4) suggests that hydrophobic nanoparticles can float on the surface no matter how 

heavy they are. However, even though the formula does not predict that hydrophilic particles will 

sink, they will sink because of a not-understood wetting instability. If heavy nanoparticles are put 

into the liquid, they will not rise. The surface layer on a liquid which gives rise to surface tension 

is very small, but not zero; likewise, the concept of contact angles on nanoparticles may lose 

meaning. 

I-2. Horizontal forces 

The deformation of a liquid-fluid interface due to trapped small particles gives rise to lateral 

capillary forces exerted on the particle. A simple explanation is shown in figure 2. For a heavier-

than-liquid particle, the meniscus is below the undisturbed level. The particles will tilt causing an 

imbalance of the horizontal component of capillary forces pulling the spheres together. Lighter-

than-water hydrophilic particles will rise into the elevated section of the meniscus and come 

together.  
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Figure 2. Spherical particles in water, (a) heavier-than-water hydrophobic particles. (b) Lighter-than-
water hydrophilic particles. (c) If for any reason, the particle tilts with the two contact angles equal, 
a horizontal force imbalance will result. In the figure, the vector Fc indicates the magnitude of the 
capillary force and F1

h  and F2
h  are horizontal components, F2

h > F1
h . 

There are several ways to isolate the effects of capillarity uninfluenced by gravity. Poynting 

and Thompson (1913) investigated the capillary effect by considering two vertical plates 

immersed in a liquid, the space between the plates is a two dimensional capillary tube. If the 

plates are hydrophobic, the level in the capillary gap sinks below the liquid outside; if the plates 
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are hydrophilic the levels will rise. Their argument about the nature of horizontal forces on the 

plates is given in the caption of figure 3. Repulsion between plates with different wetting 

properties is rather short range because it stops when the meniscus between plates gets flat.  
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Figure 3. (After Poynting and Thompson 1913). Horizontal forces associated with the fall (a) of liquid 
between hydrophobic plates and the rise (b) of liquid between hydrophilic plates. In (c) one plate is 
hydrophilic and the other hydrophobic. The contacts on both sides of a plate are the same and the 
tension γ is constant. They argue that the net horizontal force due to γ can be calculated at flat 
places; so that there is no net horizontal component of the tension. In (a) and (b) the pressures are 
such that they push the plates together; there is no net attractive force in (c). If the plates (c) are so 
close that there is no flat place, then the horizontal projection γ sin α of the interface midway between 
the plates is smaller than the horizontal component outside the plates and the plates are pulled apart; 
they repel. They note that “…small bodies, such as straw or pieces of cork, floating on the surface of 
a liquid often attract each other in clusters; this occurs when the bodies are all wet by the liquid and 
also when none of them is wet; if one body is wet and one is not wet, they repel each other.” (It may 
help here to note that if one face of the plate is hydrophobic and the other hydrophilic, the contact 
angles will put the plates in tension, tending to pull them apart.) 

Another way to take away the effects of gravity is to support the particles on a substrate. In 

this case the horizontal forces are due to capillary effects alone. Katoh, Fujita and Imazu (1992) 

studied the motion of a particle floating on a liquid meniscus which could be interpreted as 

motion on a substrate because the foaming phlystyrol particles used by them are an order of 

magnitude lighter than water, and minimize the effects of gravity compared to capillarity. Their 

experimental results are completely consistent with the predictions of Poynting and Thompson 

(1913): when the sphere and the wall are alike with respect to wetting; say both are hydrophobic 

or hydrophilic, the wall and sphere attracts; when they are unlike the sphere and wall repel.  
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Despite the well-established importance of the capillary meniscus forces there are only a few 

theoretical works devoted to them. Nicolson (1949) was the first to derive an analytical 

expression for the capillary force between two floating bubbles by using the superposition of 

approximation to solve the Laplace equation of capillarity. A similar approximate method was 

applied by Chan, Henry and White (1981) to floating spheres and horizontal cylinders. For 

horizontal cylinders the alternative approaches were proposed by Gifford and Scriven (1971) and 

by Fortes (1982). The theoretical works are based on solutions of the Laplace equations for 

capillary menisci of translational or rotational symmetry, where the Laplace equation reduces to 

an ordinary differential equation.  

An analytical solution of the Laplace partial differential equation in bipolar coordinates was 

proposed by Kralchevsky, Paunov, Ivanov and Nagayama (1992), and Kralchevsky, Paunov, 

Denkov, Ivanov and Nagayama (1993) for the case of small particles and small meniscus slope. 

This solution provides expressions for calculating the capillary meniscus force between two 

vertical cylinders, between two spheres partially immersed in a liquid layer and between a 

vertical cylinder and a sphere. A review is recently presented by Kralchevsky and K. Nagayama 

(2000).  

Their theory (see Kralchevsky and Nagayama, 2000), which has been validated in 

experiments, provides the following asymptotic expression for calculating the lateral capillary 

force between two particles of radii R1 and R2  separated by a center-to-center distance L, 

 F = −2π γ Q1Q2 qK1 qL( ) 1+ O q2Rk
2( )[ ]  when L >> rk  (5) 

where rk = Rk sinθc  (k=1 and 2) are the radii of the two contact lines (see figure 1);  

 Qk = rk sinψk  k =1 and 2( ) (6) 

with ψk  being the meniscus slope angles with respected to the horizontal plane at the contact 

point (ψ > 0 for floating light particles, and ψ < 0 for heavy particles);  

 q = ρl − ρa( )g γ  (7) 1 

is the inverse of the capillary length; in addition K1 x( ) is the modified Bessel function of the first 

order. Therefore, the lateral capillary force between two identical particles is 

 F = −2π γ Q1Q2 L ,  (7)2 
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when the distance between them is much smaller than the capillary length (q−1 = 2.7mm  for 

water-air interface).  

I-3. Particle clustering 

Due to the attractive lateral capillary forces between similar particles floating on a liquid 

surface, particles tend to cluster. The dynamic behavior of clustering is not well characterized. 

Gifford and Scriven (1971) noted that “casual observations… show that floating needles and 

many other sorts of particles do indeed come together with astonishing acceleration. The 

unsteady flow fields that are generated challenge analysis by both experiment and theory. They 

will have to be understood before the common-place ‘capillary attraction’ can be more than a 

mere label, so far as dynamic processes are concerned.” 

There are a small number of theoretical studies of the drag and diffusion coefficient of a 

spherical particle attached to a fluid interface (Brenner and Leal 1978, 1982; Goldman, Cox and 

Brenner 1967; Schneider, O’Neill and Brenner 1973; Majumdar, O’Neill and Brenner 1974—

which may be collectively designated as Brenner et al—and Wakiya 1957; Redoev, Nedjalkov 

and Djakovich 1992; Danov, Aust, Durst and Lange 1995). A recent study of Saif (2002) 

develops a theory of capillary interactions between solid plates forming menisci on the surface of 

a liquid. 

The only experimental determination of drag coefficients for particles of any size were 

performed by Petkov, Denkov, Danov, Velev, Aust and Durst (1995) for particles of sub-

millimeter radius by measuring the particle velocity under the action of well defined external 

force. They showed that the capillary interactions are quite strong and very long range. 

Accelerations, which are very great under many conditions of interest, have not been studied 

before.  

We found that the initially randomly distributed particles floating on a liquid surface tend to 

cluster due to the attractive lateral capillary forces between the particles. It is generally observed 

that the particles initially form small clusters, then the small clusters slowly merge into bigger 

ones; and eventually the bigger ones are assembled into a giant cluster. This self-assembly 

process is shown in the pictures of figure 4. The procedure by which we obtain dispersions like 

those shown at 3 min in figure 4 is noteworthy. We create such dispersions by pouring particles 

on the liquid, nothing complicated, just like a salt shaker. As soon as the particles hit the liquid 
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surface they disperse rapidly leading to dispersions like that at 3 min in figure 4. The dispersions 

then attract. This initial repulsion, followed by attraction, is more or less universal and we have 

not seen it mentioned in the literature.  

  
 Elapsed time: 3 minutes 10 minutes 

  
 30 minutes 2 hours 

  
 12 hours 24 hours 

Figure 4. Free motions leading to self-assembly of floating particles (sands in 1% aqueous polyox 
solution). 
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Experiments on particle clustering due to capillarity were carried out in glass petrie dishes 

with diameters ranging from 5 to 15 cm. Three different liquids (table 1) and two different 

hydrophobic particles (table 2) were used. Hydrophobic particles did not collect on the glass 

side-walls of the petri dishes so that end effects arising from walls in dishes of different sizes 

were not important. 

Type of liquid Glycerin Soybean oil Triton mixture 

Density ρ (g/cm3) 1.173 0.915 1.241 

Viscosity µ (cp) 1490 282 2950 

Surface Tension (mN/m) 
(measured with a spinning-drop tensiometer) 

41.46 24.28 33.15 

Table 1. Physical parameters for liquids.  

 

Type of particle Polymer particle Nylon particle 

Density ρ (g/cm3) 1.034 1.170 

Diameter dp (cm) 0.065 0.314 

Table 2. Physical parameters for particles. 

Clustering, of the type shown in figure 4, was observed for both types of the particles in 

glycerin and in the Triton-water mixture. These particles could not be suspended in soybean oil, 

because they were too heavy. However, they could be held by capillarity in the hanging film 

shown in figure 7.  

Rate of approach experiments were conducted for two identical particles attracted by 

capillary forces on the Glycerin-air and Triton mixture-air interface. The distance between the 

two particles was measured with a video camera as a function of time until they touch, as shown 

in figures 5 and 6. In general, the approaching of the particles takes hours, agreeing with the time 

for cluster formation. The curves are not similar near the time of final approach. The approach 

velocity depends strongly on liquid properties. Particles in a 6000 cp Triton mixture barely move 

even when they are placed very close together. On the other hand, the rate of approach of 

hydrophobic particles on water-air surfaces is surprisingly fast in the final times. The estimated 

final approaching velocities are 0.2µm s and 0.025 mm s  for the data shown in figures 5 and 6, 

respectively. The approach velocity is smaller for the smaller particles, but the data was erratic 

and quantitative results were not obtained. 
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Figure 5. Distance between the two identical particles. Triton mixture (2950 cp) and nylon particles were 
used. 
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Figure 6. Distance between the two identical particles. Glycerin and nylon particles were used. 

The photograph in figure 7 shows the aggregation of polymer particles in a hanging glycerin 

film on the bottom of a flat glass plate taken from the top of the plate. The particles are 

encapsulated by glycerin and drawn together in hanging drops of glycerin robustly stable for 

months. This hanging drop configuration is shown in figure 9 as a cartoon in side view. 
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Figure 7. Aggregates of polymer particles in glycerin drops hanging from the bottom of a glass plate. 

The ability of self-assembly of particles under the action of lateral capillary forces has been 

used by Bowden et al. (1997, 1999) and Grzybowski et al. (2001). They assembled topologically 

complex mesoscale (from millimeter to micrometer size) objects into ordered two-dimensional 

arrays by floating the objects at the interface between perfluorodecalin (hydrophobic) and water. 

The structure of the arrays was manipulated by the design of the shape of the assembling objects 

and wettability of their surfaces. They modeled the self-assembly process as the minimization of 

the total interfacial free energy (the sum of the capillary energy and the gravitational energy) of 

the liquid-liquid interface. 

II. Particle aggregation in a liquid film rimming a rotating cylinder 

Tirumkudulu, Tripathi and Acrivos (1999) first reported particle segregation in a suspension 

of monodispersed neutrally buoyant spheres in a Newtonian liquid medium being sheared in a 

partially filled horizontal Couette device. They found that the suspension separates itself into 

alternating regions of high and low particle concentration along the length of the tube. In a 

following study, Tirumkudulu, Mileo and Acrivos (2000) (hereafter denoted as TMA 2000) 

observed that under certain circumstances particles which are initially uniformly mixed in a film 

rimming a horizontal rotating cylinder will also be drawn into cylindrical bands of high particle 

concentration separated by regions of pure liquid. They did not offer a quantitative explanation 

of this phenomenon but suggested that the cause might be found in changes of the effective 

viscosity of the suspension induced by fluctuations of concentration. A theory relying on the 
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shear induced diffusion of particles, concentration-dependent viscosity and the existence of a 

free surface was developed by Govindarajan, Nott and Ramaswamy (2001) to provide an 

explanation of the above mentioned experiments. However, quantitative comparison with the 

experimental data was not provided. A latest experimental result was reported by Timberlake and 

Morris (2002) in which concentration band dynamics was studied using a partially filled Couette 

device. They showed that the particle migration process observed in experiments was much 

faster than that predicated by the shear induced diffusion theory, about 40 times faster in one 

case examined, suggested strong evidence against shear-induced diffusion as the mechanism 

responsible for the observed segregation.  

We carried out similar experiments and identified two regimes in which particles segregate; a 

low-speed, low-Reynolds number regime, in which particles are segregated at thin places on the 

rimming film by lateral capillary forces, and a high-speed regime associated with the formation 

of bubbles (Balmer 1970, Karweit and Corrsin 1975, Preziosi and Joseph 1988 among others). 

The segregation at low Reynolds numbers occurs in the parameter ranges similar to those studied 

by TMA 2000. The high-speed segregation has not been noted before. 

II-1.  The ratio of the minimum film thickness to the particle diameter 

The segregation of particles due to capillarity occurs in the thin part of the film rimming the 

rotating cylinder near the top of the cylinder. The critical parameter for this appears to be the 

ratio Dmin/dp, where Dmin is the minimum film thickness which is near the top of the cylinder to 

the side in which the gravity and the vertical component of rotation point downward (figure 8).  
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Figure 8. Film profile in rimming flow inside a rotating cylinder. (a) For small β. (b) For β larger than a 

critical value (βc =1.414 ).  

We find that Dmin/dp is O(1) and the rotational speed of the cylinder must be slow enough relative 

to the speed of capillary attraction to allow clusters to form more rapidly than they disperse in 
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the pool of liquid at the bottom of the rotating cylinder. TMA (2000) identified the relevant 

rotation parameter 

 
Ω

=
ν

β gRF  (8) 

where F is the fill ratio, i.e., the ratio of the total volume of liquid inside the cylinder to the 

volume of the cylinder; R is the radius of the cylinder; Ω is its angular rotational speed; ν is the 

kinetic viscosity of the liquid; g is the gravitational acceleration. The parameter β is the only 

dimensionless parameter to arise in lubrication theory; its relation to the filling parameter F is 

subtle and needs clarification. When β < βc = 1.4142, a smooth film exists inside the rotating 

cylinder. However, when β is increased beyond the critical value βc, smooth solution of the 

lubrication equations does not exist, and a bump is formed near the bottom of the cylinder where 

the film thickness varies rapidly, as is shown in figure 8 and in figures 1 and 3 of TMA (2000). 

Lubrication theory can be used to compute Dmin when β < βc; it can also be used to compute the 

minimum film thickness in the region above the pool of liquid when β > βc by a procedure which 

will be discussed below, but the solution is not uniformly around the cylinder in the pool below. 

The critical condition for the existence of a smooth solution of the lubrication equation for a thin 

film on the exterior of a rotating rod was called the “run-off” condition by Preziosi and Joseph 

(1988) and the critical condition for rimming flow was called a “run-on” condition. The run-off 

and run-on conditions were verified in experiment reported by Preziosi and Joseph (1988).  

Many authors have published analyses of lubrication flows of liquids running inside of a 

rotating cylinder: Diebler and Cerro (1970), Moffatt (1977), Preziosi and Joseph (1988), Johnson 

(1988), O’Brien and Gath (1998) and Tirumkudulu and Acrivos (2001).  

The segregation of particles by capillary forces does not correlate with β but the ratio Dmin/dp 

is important and lubrication theory can be used to compute Dmin by the method described below. 

The physical parameters are the cylinder radius R, the kinematic viscosity of the fluid ν, the 

angular speed of rotation Ω, the volume fraction of the fluid F, the acceleration of gravity g, the 

liquid flux Q, and the thickness of the film D. Preziosi & Joseph (1988) obtained the following 

equation for D using a lubrication theory:  

 3
00

3

3
1cos

3
1 DgRDDgRDQ

ν
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ν
−Ω=  (9) 
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where D0 is the film thickness at θ = 0. Let h = D/R and S = gR/νΩ, (9) can be written in the 

following non-dimensional form: 

 3
00

3
2 3

1cos
3
1 ShhShh

R
Q

−=−=
Ω

θ  (10) 

where ho is the maximum film thickness; ho = h(θ ) at θ = 0 (see figure 8). Preziosi & Joseph 

gave the condition under which equation (10) is solvable, 

 12
0 <Sh . (11) 

Expression (11) is also the critical criterion of run-on. 
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Under such definitions, (10) becomes: 

 3
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O’Brien and Gath gave the condition under which equation (12) is solvable: 

 0 < q < 2/3 (13) 

Note that when q = 2/3, the solution of (12) is η0 = 2/1
0Sh =1. Hence, the run-on criterion (11) is 

equivalent to (13).  

The fluid fraction F can be computed by integrating D(θ ): 

 ∫− ≡=
π

π

βθθ
π 2/1)(1

S
dD

R
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π

π
θθη

π
β d)(1 . (14) 

By virtue of (12) and (14), the value of β corresponding to q = 2/3 is β =1.4142.  

Therefore, the three run-on conditions are equivalent:  12
0 <Sh ,  0 < q < 2/3, and β < 1.4142.  

When β < 1.4142, all the fluid join the circulation. The fluid flux is obtained from F, 

 
22
F

R
Q

=
Ω

 . (15) 

Hence, equation (10) can be solved for the film profile, h(θ ),  

 h − 1
3 Sh3 cosθ = 1

2 F , (16) 

and the minimum film thickness can be obtained from θ = π . 
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The maximum film thickness ho at θ = 0 is an increasing function of β with a maximum at 

β = βc. When β > βc =1.4142 , there are places on the cylinder where the thickness of the layer is 

larger than the critical value, and the excess fluid will collect under the bump. However, it may 

be assumed that ho remains at θ = 0 (see figure 8); it is the maximum thickness of the film above 

the bump. This assumption could not be strictly correct; Ruschak and Scriven (1976) showed 

that under a perturbation of the thin film condition used to justify lubrication theory the position 

of the maximum thickness rotates into the first quadrant. We assume that the maximum film 

thickness that can be maintained by rotation is determined by the critical run-on condition (11), 

h0 =1 S = νΩ gR . Therefore, we can calculate the actual fluid flux in the circulation by 

 Q
ΩR2 = h0 −

S
3

h0
3 =

2
3 S

. (17) 

Then the minimum film thickness at θ = π  is determined from the volume conservation (10), 

 Q
ΩR2 = hmin +

S
3

hmin
3 =

2
3 S

 

or, 

 hmin =
0.596

S
= 0.596 νΩ

gR
 . (18) 

Tirumkudulu & Acrivos (2001) solved the film profile using lubrication analysis and numerical 

computation from the full Stokes equations, and compared their solutions with experimental 

measurements. They found that ηmin = hmin
gR
νΩ

= 0.6 , (in their Figure 5), which agrees perfectly 

with our expression (18) based on a much simpler argument. Therefore, when β  is greater than 

β c, the minimum film thickness Dmin listed in table 3 are evaluated from (18). Corresponding to a 

specified filling level F, we may also determine the average film thickness Da from  

 F =
R2 − R − Da( )2

R2  , that is, Da = 1− 1− F( )R  . (19) 

II-2. Particle segregation in aqueous Triton mixtures 

TMA 2000 found particle segregation in monodispersed sheared suspensions in a partially 

filled rotating horizontal cylinder when the filling fractions (liquid volume/total volume) were 



Printed 1/21/2005 12:40:00 PM XVI-16 DDJ/2002/papers/MotionParticles/ChapXVI 

small 0.1 ≤ F ≤ 0.15. The particle concentrations for the uniform mixtures were 5% and 15%. 

The values of β  in experiments reported in TMA 2000 were all greater than cβ .  

Systematic experiments on clustering of particles into bands were carried out using the 

polymer particle whose properties are described in table 2. In these experiments we used the 

same fluid as TMA. The liquid is a mixture of Triton X 100, ZnCl2 and water in combinations 

used to control viscosity. The high viscosity mixture is in the range of 20-60 poise and a density 

in the range 1.1~1.5 g/cm3. The viscosity of the mixture is sensitive to temperature which was 

maintained at 68 ± 2°F in our experiments.  

The experiments were conducted in two different rotating cylinders; one is 30 cm long and 

the inside diameter is 2.792 cm; the other is 15 cm long with the same inside diameter. The 

cylinder is supported horizontally and is driven at constant rotational speed Ω by a motor. For 

these experiments, the Reynolds number ν)( 2
ae DR Ω= , where Ω  is the angular velocity of the 

cylinder, Da the mean thickness of the film, and ν  the kinetic viscosity of the pure liquid, is 

always very small (less than 10-2). Inertial effects were generally negligible. 

 F  R 
(cm) 

Ω 
(rpm) 

µ 

(poise)
ρ 

(g/cm3)
ν 

(cm2/s)
β Da 

(cm) 
Dmin 
(cm) 

Dmin /dp 

TMA 1 0.150 1.270 1.40 40.00 1.172 34.13 2.36 0.099 0.0480 1.04 

TMA 2 0.125 5.000 2.80 49.00 1.172 41.81 2.50 0.323 0.149 3.24 

M1 0.151 1.396 1.65 51.95 1.241 41.86 2.08 0.110 0.0605 0.931 

M2 0.140 1.396 1.65 29.50 1.332 22.15 2.05 0.101 0.0440 0.677 

M3 0.150 1.396 1.10 51.95 1.241 41.86 2.53 0.110 0.0494 0.760 

M4 0.145 1.396 10.9 48.50 1.212 40.02 2.11 0.105 0.0966 1.49 

M5 0.061 1.396 1.76 44.34 1.203 36.86 0.87 0.043 0.0403 0.620 

M6 0.061 1.396 3.13 44.34 1.203 36.86 0.65 0.043 0.0412 0.634 

M7 0.061 1.396 6.00 44.34 1.203 36.86 0.47 0.043 0.0418 0.648 

M8 0.061 1.396 10.0 44.34 1.203 36.86 0.37 0.043 0.042 0.646 

M9 0.046 1.396 38.71 2.377 1.498 1.587 0.67 0.032 0.0310 0.477 

M10 0.046 1.396 51.10 2.377 1.498 1.587 0.58 0.032 0.0313 0.482 

Table 3. Parameters for experiments reported in TMA (2000) and for our experiments (M1 through M10).   

In table 3 we listed the parameters for the experiments using Triton mixtures reported by 

TMA and our experiments using the polymer particles (table2) colored blue for visualization. 
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The derived parameters β,Da,Dmin ,Dmin dp( ) are based on the properties of the pure liquid. The 

particles used by TMA1 and TMA2 were neutrally buoyant with density 1.172 g cm3 , and 

diameter dp = 0.04625 ± 0.00375 cm  in concentrations of 15%. The values of β  for TMA1 and 

TMA2 based on the viscosity of the homogenous suspension would be 1.8 and 1.9, respectively.  

In our experiments, M1-M10, the density of the particles ρp =1.034 g cm3  is less than fluid 

density; the diameters of the particles are more dispersed with an average particle diameter 

dp = 0.065 cm . The concentrations of the particles range from 2% to 7%. The cylinder length is 

15 cm from M4 and M5; otherwise the cylinder length is 30 cm. The values of the minimum film 

thickness, Dmin dp , listed in table 3 are all of O 1( ), and are consistent with the observations of 

particle segregation driven by capillarity of the thin films. Although our particles are not 

neutrally buoyant, the sedimentation of the particles in the liquid used in the experiments can be 

neglected, since the sedimentation velocity of the particles in those liquids is of the order of 

10 nm s. 

g

Air

Top of cylinder

 

Figure 9. Capillary attraction of two particles hanging in a film at the top of a stationary rotating 
cylinder. The liquid film is the top section (the gray area). The air fills the other space. 

After the cylinder is partially filled with the uniform suspension, it is turned a few times by 

hand and then put to rest so that the suspension covers the whole inside cylinder. It was observed 

that particles trapped in the thin film at the top of the cylinder move rather rapidly together under 

the action of capillarity (see figure 9). A similar kind of dynamics prevails when the cylinder 

rotates continuously at a constant velocity. In general the trapped particles are completely wet by 

the liquid as they pass through the deep pool at the bottom of the rotating cylinder. The 

segregation of particles generally occurs slowly. It takes a long time (hours) for the particles to 

reach the final steady band formation. The particle segregation occurs in a number of stages. The 

first is the formation of many small particle clusters, which were nucleated randomly along the 

cylinder after a few minutes. As time passes by, small particle clusters merge into larger ones. 
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Eventually they form into several comparatively large blocks which are often far from each 

other. These large blocks are quite stable, and stay separated. Meanwhile, they are gradually 

stretched thinner and longer in the flow direction, and eventually form cylindrical bands. Some 

bands may merge. The final formation of the bands is frequently uniform along the cylinder axis. 

The bands are not robustly stable; they may born, move, break and reform. It can be said that 

uniform dispersion is robustly unstable and clusters are robustly stable. The snap shots of the 

particle band formation are shown in figure 10. 

 
(a) Uniform distribution of particles at the beginning 

 

 
(b) Particle clusters 

 

 
(c) Larger clusters 

 

 
(d) Particle bands 

Figure 10. Process of particle bands formation. The experiment is performed with high viscous Triton-
mixture fluid under low rotating speed and low filling level (case M7). 
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In our experiments, it is observed that the formation of particle clusters or bands is easier in 

more viscous liquid at a low rotational speed. In experiments with a high-viscosity Triton 

mixture, we had to restrict to low rotating speed to get bands to separate. The rotational speed of 

the cylinder has to be slow enough such that the time needed for capillary attraction is 

comparable to the residence time for the particles in the thin part of the rimming film. 

For the low-viscosity Triton mixtures, it is possible to get band separation by decreasing the 

filling level and at the same time increasing the rotational speed. The band formation was 

observed for the range of small β  values (0.5~0.7). However, the rotational speed should not be 

too high, since then the particle clusters may not form, and even if particle clusters form they are 

not stable. The process of particle segregation in low-viscosity Triton mixtures (shown in figure 

11) is similar to the case with high-viscous Triton-mixture (figure 10). Decreasing the filling 

level F  as well as increasing the rotating speed is not always effective for low-viscosity fluids; 

we repeated the experiment with soybean oil and glycerin with relatively high rotating speeds 

(corresponding to β =1.0~1.2), and even though bands did not form, particle clusters were 

always generated by capillary induced “anti-diffusion”.  

 

    
 (a) Initial distribution (b) Particle clusters 

 

    
 (c) Particle blocks  (d) Initial bands 
 

    
 (e) Developing bands  (f) Final bands 

Figure 11. Process of particle bands formation. The experiment is performed with low viscous Triton-
mixture fluid under relatively high rotating speed and low filling level (case M10). 
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Experiment M3 (table 3) is a high filling level case. Band separation occurred, however, 

there were many particles in the liquid sections between particle bands, in contrast to the case 

with low-filling where clear pure liquid between the particle bands were observed. The 

segregation of particles into cylindrical bands may take hours even days. The achieved 

configurations are stable for times of the order of hours and days. There is slight secondary flow 

and transverse movement of particles can be seen between particle bands.  

 

   

Figure 12. Particles which are initially distributed uniformly in a film rimming a rotating cylinder 
segregate into cylindrical bands (case M3). The formation of the bands takes hours.  

In table 4, we list values for the times of formation of small clusters tw1, large clusters (called 

blocks) tw2 and bands tw3 and the distance between bands as a function of the filling level and 

angular velocity. In general, for the same filling level, clusters form faster with the rotational 

speed increasing.  

Filling level  
F 

Rotating 
speed   

Ω  (rpm) 

Waiting time for 
particle clusters 

1wt   (hour) 

Waiting time 
for large blocks 

2wt  (hour) 

Waiting time 
for bands  

3wt  (hour) 

Average distance 
between bands  

l  (cm) 

0.061 1.76 1.1 2.6 6.6 6.2 

0.061 3.13 0.8 2.1 4.7 5.5 

0.061 6.00 0.6 2.2 4.0 3.9 

0.061 10.0 0.5 1.8 3.5 4.5 

0.046 38.71 0.10 0.25 0.40 3.9 

0.046 51.10 0.08 0.20 0.30 3.6 

Table 4. Times and distance of cluster and band formation.  
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In this section we described cluster and band formation due to capillarity for lighter-than-

liquid polymer particles in small concentrations in a highly viscous Triton mixture under 

conditions in which Dmin/dp = O(1).  

II-3. Particle segregation in water 

We did experiments in water using the same polymer particles as before. In figure 13 we 

show cluster and band formation due to capillarity for heavier-than-water particles in large 

concentration 20.7% with β = 15.94.  

 
(a) 3 minutes after beginning of rotation 

 
(b) 1.5 hours after beginning of rotation 

 
(c) 6 hours after beginning of rotation 

 
(d) 18 hours after beginning of rotation 

Figure 13. Band formation of particles due to capillarity. The fluid is water (18°C) and the particles are 
polymer particles with a density of 1.034 g/cm3 and a diameter of 0.065 cm. The filling level of the 
fluid is 4.08% and the particle concentration is 20.7%. The rotating speed Ω = 8.57 rpm, β = 15.94, 
average film thickness Da

 = 0.288 mm, minimum film thickness Dmin = 0.0213 mm, Dmin /dp = 0.033.  
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II-4. Particle segregation in glycerin 

Clustering and band formation due to capillarity is very robust in thin films on the inside of a 

rotating cylinder. In figures 14, 15 and 16 we show clusters and bands for three different cases. 

In figure 14 the neutrally buoyant particles are very large and the concentration of particles is 

54.2%. In figure 15 the particles are much heavier than glycerin, but bands form nonetheless. In 

figure 16 the particles are lighter than glycerin and bands form as well. 

 

 

Figure 14. Clustering of particles due to capillarity. The fluid is glycerin with a density of 1.173 g/cm3, a 
viscosity of 1490 cp, and a surface tension of 41.46 mN/m. The particles are white Nylon particles 
with a density of 1.170 g/cm3 and a diameter of 0.314 cm. The filling level of the fluid is 8.2% and the 
particle concentration is 54.2%. The rotating speed Ω=5.45 rpm, β=1.127, average film thickness 
Da=0.585 mm, minimum film thickness Dmin= 0.526 mm, Dmin /dp = 0.176. Clusters of particles form 
about 5 minutes after starting of rotation. Bands form occasionally but are not stable.  

 

 
(a) 2.5 hours after beginning of rotation. 

 
(b) 16 hours after beginning of rotation. 

Figure 15. Band formation of particles due to capillarity. The fluid is glycerin with a density of 1.173 
g/cm3, a viscosity of 1490 cp, and a surface tension of 41.46 mN/m. The particles are 16/20 Naplite 
sands with a density of 2.59 g/cm3 and a diameter of 0.959 mm. The filling level of the fluid is 7.85% 
and the particle concentration is 13.0%. The rotating speed Ω =5.45 rpm, β=1.079, average film 
thickness Da = 0.559 mm, minimum film thickness Dmin = 0.506 mm, Dmin /dp = 0.528.  
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Figure 16. Band formation of particles due to capillarity. The fluid is glycerin with a density of 
1.173 g/cm3, a viscosity of 1490 cp, and a surface tension of 41.46 mN/m. The particles are polymer 
particles with a density of 1.034 g/cm3 and a diameter of 0.65 mm. The filling level of the fluid is 
10.5 % and the particle concentration is 4.8%. The rotating speed Ω = 5.45 rpm, β = 1.443, average 
film thickness Da = 0.753 mm, minimum film thickness Dmin = 0.605 mm, Dmin /dp = 0.931. Band 
formation 15 hours after beginning of rotation is shown in the figure. 

III. Particle segregation due to the formation of bubbles 

When a partially filled horizontal cylinder is rotated at rates which are not too high or too 

low such that the effects of surface tension and gravity are both important, air bubbles separated 

by disks of liquid will form. The bubbles are then not centered and can take different shapes 

depending on conditions. The off-center bubbles pump the liquid to form the secondary motion 

which is from the bubble to the liquid disks near the bubble surface and from the liquid disks to 

the bubble near the wall (see figure 19). Particles are centrifuged to the wall if they are heavier 

than the liquid; they are centrifuged to the surface of the bubble is they are heavier than the air 

but lighter than the liquid. Driven by the secondary motion, lighter-than-liquid particles 

segregate in the liquid disks; heavier-than-liquid particles segregate in the region circling the 

bubbles when the bubbles are off the wall, and in the liquid disks when the bubbles touch the 

wall. 

III-1.  Bubbles in a partially filled rotating cylinder 

Rimming flow is a coating flow inside a partially filled rotating horizontal cylinder. The 

filling level F is the volume fraction of liquid in the cylinder; when F is large there is very little 

air in the cylinder. If the filling fraction is not too small, which is characterized by β > βc  in 

expression (9) and the flat bump of the film profile depicted in figure 8(b) becomes unstable, air 

bubbles will form and the shape, numbers and position of these bubbles depend on F, the angular 

velocity Ω, the surface tension γ, the viscosity of the liquid, the density difference between liquid 

and gas gl ρρ − , and the dimensions of the apparatus. The qualitative effects of all these 

parameters are fairly well understood. 
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When the cylinder rotates so fast that the effects of centrifugal gravity Ω2R (R is the cylinder 

radius) overwhelm those of terrestrial gravity, Ω 2 R g >> 1, all of the liquid is centrifuged and 

rotates with the cylinder as a rigid body; in this case the air is centered and if the filling level is 

not too small, bubbles will form under the action of an interfacial potential (see Preziosi and 

Joseph 1987). An important parameter for this potential is 

 J =
(ρl − ρg )Ω2Rb

3

γ
 (20) 

where Rb  is the maximum radius of the bubble. This parameter J does not depend on gravity, 

viscosity, filling level or the length of the apparatus. If J < 4 cigar shaped bubbles will form; the 

bubbles are all identical but the number of them depends on the filling level and the history of 

their creation. J = 4 is a limiting value for the drop shape parameters; when Ω is increased, the 

maximum radius of the bubble decrease in such a way that J = 4; when the ratio of bubble length 

to radius L Rb > 8, the bubble shape is very closely approximated by a cylinder of constant 

radius Rb  bounded by two semi-spherical end caps (this is nearly achieved in figure 17f). 

Equation J = 4 was derived from heuristic arguments by Vonnegut (1942). It is the working 

formula for “spinning drop” tensiometer which are used to measure interfacial tension (see 

Joseph et al. 1992). 

As Ω is increased, Rb  decreases with J = 4. Since the bubble volume is fixed the length L 

increases and eventually all the bubbles collect end to end to form a long cylindrical column, 

rigorously centered, which does not change under further increases of angular velocity. 

Coming the other way, decreasing from large values of Ω2R/g, the length of the bubbles will 

decrease and the maximum radius Rb  will increase with J = 4. Eventually, when Ω2 R g ~ O 1( ) 

the effect of terrestrial gravity becomes important, the bubble rise; secondary motions are 

generated and velocity becomes important. Photographs which exhibit typical regimes are 

displayed in figure 17 where we compare soybean oil whose viscosity is 282 cp with Triton 

mixture whose viscosity is 2950 cp. The main effect of viscosity here is to maintain rigid motion 

of the fluid under perturbations with gravity. The radius of the cylinder used in our experiments 

is 0.64 cm and the ratio of centrifugal to terrestrial gravity are listed below: 

Ω 200 300 600 1000 
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Ω2R/g 0.287 0.64 2.57 7.16 

Table 5. Gravity ratio for different angular velocity. 

When Ω = 1000 rpm, the bubble is rigorously centered and extends from end to end of the 

cylinder. When Ω = 600 rpm, the effects of gravity are sensible. The perturbation of rigid motion 

in the high viscosity Triton mixture is small and the secondary motions are much weaker than in 

soybean oil. The configuration in figure 17(f) is essentially uninfluenced by gravity with 

centered bubbles whose shape is determined by a potential lined up end to end. At lower value of 

Ω, the bubbles rise but the secondary motions which distort the bubbles are less important in the 

high viscosity fluid. 

  
 (a) Soybean oil, Ω = 200 rpm  (b) Triton mixture, Ω = 200 rpm 

    
 (c) Soybean oil, Ω = 300 rpm  (d) Triton mixture, Ω = 300 rpm 

  
 (e) Soybean oil, Ω = 600 rpm  (f) Triton mixture, Ω = 600 rpm 

       
 (g) Soybean oil, Ω = 1000 rpm  (h) Triton mixture, Ω = 900 rpm 

Figure 17. Comparison of soybean oil and Triton mixture under same conditions 

As the angular velocity is decreased to zero the liquid and air stratify, with all the air at the 

top. Even in this case, a stationary liquid, the air may separate into bubbles induced by capillarity 

if the filling level is not very high; if the filling level is near 100%, the very small amount of air 

will rise to the top and form a single short bubble due to the restraining action of surface tension. 
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Many unusual shapes of bubbles may occur when Ω2 R g ~ O 1( ), as put into evidence and in 

the papers by Balmer (1970), Sanders, Joseph and Beavers (1981) and Preziosi and Joseph 

(1988). 

The combined effects of the filling level and rotational speed on the formation of the bubbles 

are of interest. When the gravity ratio parameter is small, Ω2 R g <<1, the liquid and air are 

stratified with a thin film being dragged up by the rotating cylinder. If the filling level is large 

enough, the thickness of the film dragged up increases as the cylinder rotates faster. Up to a 

critical condition, the thick liquid film on the top of the cylinder cannot be maintained and part of 

it falls down under gravity, subsequently the single air bubble breaks. On the other hand, when 

the gravity ratio parameter is large, the air forms a rigorously centered cylindrical column 

stretching from end to end of the cylinder. If the rotational speed decreases, the stabilizing effect 

of the centrifugal acceleration decreases. Up to a point, the combined effects of the surface 

capillarity and the terrestrial gravity will break up the air bubble into smaller ones.  

The critical conditions under which the single air bubble breaks were determined 

experimentally for the rimming flow of soybean oil. The two lines on a (F, Ω) plane in figure 18 

indicate the critical conditions. When the filling level and rotational speed fall in the region 

between the two lines, the bubble breakup is observed; otherwise, a single air bubble is stable. 

Note that when F < 0.4, a single air bubble is stable at any rotational speed. 
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Figure 18. Critical conditions for the single air bubble breakup in soybean oil. The experiments were 
carried out in a cylinder of glass with inside diameter 1.28 cm and length 22.14 cm. When F < 0.4, a 
single air bubble is stable at any rotational speed. For F ≥ 0.5, when the rotational speed is between 
Ω 1 and Ω2, air bubble breakup is observed. 
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III-2. Particles segregation due to bubbles 

In a system with several smaller air bubbles distributed along the length of the cylinder and 

displaced off the axis of the rotation by the action of gravity, the motion of the particles 

suspended in the liquid may be driven by the secondary motions associated with the pumping 

effect around the off-center bubbles. The liquid passes by the above-center bubbles which are 

relatively stationary and are pushed away from the places occupied by the air. The pumping 

motion of the bubble sets up an eddy which will push the liquid from the bubble to the liquid 

disks near the bubble surface and from the liquid disks to the bubble near the wall (see figure 

19). 

 
Figure 19. The eddies set up by the pumping motion of the off-center bubble. Liquid flows from the bubble 

to the liquid disks near the bubble surface and from the liquid disks to the bubble near the wall. 
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(a) 200=Ω  rpm 

 
(b) 300=Ω  rpm 

 
(c) 600=Ω  rpm 

 
(d) 1000=Ω  rpm 

Figure 20. Particle segregation of resin particles ρp = 1.13 g/cm, average diameter dp = 0.065 cm, 
concentration 15% in soybean oil, filling level 60%. 

The changes in the nature of heavier-than-liquid particle segregation as Ω2R/g changes (see 

table 5) are shown in four panels of figure 20 where we go from stratified flow (a) to uniform 

flow (d). The experiments were carried out in a cylinder of glass with inside diameter 1.28 cm 

and length 22.14 cm. Comparing figure 17(a, c) with figure 20(a, b) we see that the particles 

promote bubble formation at low speeds in soybean oil. This effect may be due to the increase in 

the effective density of the mixture which increases the value of J in (20) by replacing ρ l with 

)1( φρφρρ −+= lpc  where φ is the particle fraction. 

The heavier-than-liquid particles are centrifuged and segregated near the cylinder wall where 

secondary motions are weakest. The eddies push the particles on the wall to the region circling 

the bubble and away from the gap between bubbles when the rotational speed of the cylinder is 

large enough to centrifuge the air away from the wall but not so large as to center it (figure 20c). 
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At lower speeds, the bubbles rise all the way to the wall and the particles on the wall are pushed 

to the space between bubbles (figure 20a,b). 

In figure 21 we show that for heavier-than-liquid particles, segregation does not depend 

sensitively on the type of particle. 

   
 (a) 16/30 AcFrac PR, 300=Ω  rpm (b) Resin particle, 300=Ω  rpm 

   
 (c) 16/30 AcFrac PR, 600=Ω  rpm  (d) Resin particle, 600=Ω  rpm 

Figure 21. Segregation of two different particles in soybean oil. The AcFrac PR particles are hydrophilic, 
ρp =1.64 g/cm, average diameter dp = 0.088 cm; the resin particles are hydrophobic, ρp = 1.13 g/cm, 
average diameter dp = 0.065 cm.  

 
(a) 200 rpm 

 
(b) 600 rpm 

Figure 22. Particle segregation of resin particles ρp = 1.13 g/cm, average diameter dp = 0.065 cm, 
concentration 8.96% in glycerin, filling level 66.7%. 

Figure 22 shows the segregation pattern of particles which are lighter than the liquid. The 

lighter-than-liquid particles are centrifuged to the surface of the bubbles. The eddies described in 

figure 19 will push the particles to the space between air bubbles. Compare figure 20(c) with 

figure 22(b), the different patterns should be noted. The heavier-than-liquid particles segregate in 

the region above the bubbles, whereas the lighter-than-liquid particles segregate in the space 
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between bubbles. In figure 22(b), some of particles do circulate around the bubbles because the 

bubbles are almost centered and the secondary motions are weak. 

III-3.  Segregation of bi-disperse suspension in a partially filled rotating 
cylinder 

Preliminary experiments using suspensions of particles with two different weights show that 

the rotating flow leads to segregation of the two types of particles into separate regions whose 

exact form depends on the weight and concentration of particles and on other features which 

have yet to be determined. Here we show that this kind of segregation does occur and is robust. 

Figure 23 and 24 show two experiments of segregation of bi-disperse suspension in aqueous 

glycerin solutions. The different concentrations of the brown resin particles cause different 

patterns of segregation (figure 23a and figure 24a). The rotating flow finally leads to uniform 

distribution of particles, with the heavy particles at the end of the cylinder and the light particles 

at the middle of the cylinder (figure 23c and figure 24c). Figure 25 shows bi-disperse suspension 

in water. The configuration shown in figure 25 is stable for hours. 

 
(a) 30 minutes after beginning of rotation. 

 
(b) two hours after beginning of rotation. 

 
(c) 20 hours after beginning of rotation. 

Figure 23. Segregation of two types of particles in a 47.8% aqueous glycerin solution, ρl = 1.09 g/cm3. 
The filling level of the liquid is 0.354. The black is a silicon particle with ρp = 3.07 g/cm3, average 
diameter dp = 0.05 cm, and its concentration is 21.7%. The brown is a resin particle with ρp = 1.13 
g/cm3, average diameter dp = 0.065 cm, and its concentration is 12%. The rotational speed is 165 
rpm. 
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(a) four minutes after beginning of rotation. 

 
(b) 24 minutes after beginning of rotation. 

 
(c) 36 minutes after beginning of rotation. 

Figure 24. Segregation of two types of particles in a 48.7% aqueous glycerin solution. The filling level of 
the liquid is 0.328. The black is a silicon particle with ρp= 3.07 g/cm3, average diameter 
dp = 0.05 cm, and its concentration is 16%. The brown is a resin particle with ρp = 1.13 g/cm3, 
average diameter dp = 0.065 cm, and its concentration is also 16%. The rotational speed is 160 rpm. 

 

Figure 25. Segregation of two types of particles in water. The filling level is 0.357. The black is a silicon 
particle with ρp = 3.07 g/cm3, average diameter dp = 0.05 cm, and its concentration is 4%. The brown 
is a resin particle with ρp = 1.13 g/cm3, average diameter dp = 0.065 cm, and its concentration is 
16%. The rotational speed is 306 rpm. 

IV. Conclusion 

The principal facts concerning capillary attraction and self-assembly of small lighter- and 

heavier-than-fluid floating particles were reviewed. These facts were applied to explain the 

clustering and segregation of bands of particles in a thin liquid film rimming the inside of a 

partially filled, slowly rotating cylinder in situations resembling those first observed by 

Tirumkudulu, Mileo and Acrivos (2000). In our experiments clustering and band formation 

occurred under all kinds of conditions, for lighter- and heavier-than-liquids, for small particles 
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and large particles, and for low concentrations and high concentrations of particles. Uniform 

dispersions of particles in thin films are robustly unstable to anti-diffusion due to capillarity, and 

clusters which are self-assembled are robustly stable. The conditions required to support this 

phenomenon are that the liquid film is thin relative to the particle size; the film should be thin, or 

in any case, not much thicker than the particles. The rotation speed of the cylinder should be 

slow enough that the time needed for sensible capillary attraction is comparable to the time of 

residence of the particle in the thin part of the rimming film.  

Particle segregation may also be generated by pumping secondary motions of fluid by off-

center gas bubbles, which arise when the gravity parameter Ω2R/g ≤ O(1) and the filling level is 

not too small. Lighter-than-liquid particles segregate in the liquid disks between bubbles; 

heavier-than-liquid particles segregate in the region above the bubbles when they are off the 

wall, and in the liquid disks when the bubbles touch the wall.  

A third regime of segregation of bi-disperse suspension of particles of different heavier-than-

liquid weights, which stratify when the cylinder is at rest, form into rings when the cylinder 

rotates. Different forms of the ring appear to depend on the particle concentration and other 

factors which have as yet to be determined.  
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• Fluid Dynamics of Floating Particles 

 Singh and Joseph (2005) have developed a numerical package to simulate particle motions in 
fluid interfaces. The particles are moved in a direct simulation respecting the fundamental equations of 
motion of fluids and solid particles without the use of models. The fluid-particle motion is resolved by the 
method of distributed Lagrange multipliers and the interface is moved by the method of level sets. The 
present work fills a gap since there are no other theoretical methods available to describe the nonlinear 
fluid dynamics of capillary attraction.  

 Two different cases of constrained motions of floating particles are studied here. In the first case, 
we study motions of floating spheres under the constraint that the contact angle is fixed by the Young-
Dupré law; the contact line must move when the contact angle is fixed. In the second case, we study 
motion of disks (short cylinders) with flat ends in which the contact line is pinned at the sharp edge of the 
disk; the contact angle must change when the disks move and this angle can change within the limits 
specified by Gibbs extension to the Young-Dupré law. The fact that sharp edged particles cling to 
interfaces independent of particle wettability is under appreciated and needs study. 

 The numerical scheme presented here is at present the only one which can move floating particles 
in direct simulation. We simulate the evolution of single heavier-than-liquid spheres and disks to their 
equilibrium depth and the evolution to clusters of two and fours spheres and two disks under lateral forces 
collectively called capillary attraction. New experiments by Wang, Bai and Joseph (WBJ 2003) on the 
equilibrium depth of floating disks pinned at the edge are presented and compared with analysis and 
simulations. 
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I. Introduction 

 

In the work which follows, we will be considering the motions of particles which float in the 

interfaces between two fluids. We shall sometimes describe the wettability properties of the particles as 

hydrophobic or hydrophilic. The mathematical description of our problem in terms of air and water is 

only a convention for the general problem of motion of particles in the interfaces between any two fluids. 

It is well known that small tea leaves floating on the tea surface collect near the cup wall due to the 

formation of a meniscus that rises near the wall and results in a net capillary force towards the wall. The 

meniscus rises near the wall because the water wets the cup. If, on the other hand, the liquid does not wet 

the cup, i.e., the meniscus falls near the cup wall, small floating particles tend to move away from the wall 

and toward the center of the cup. Similarly, the deformation of liquid-liquid interfaces due to floating 

light particles, or due to trapped heavy particles, gives rise to capillary forces on the particles which cause 

them to cluster, as can be seen in figure I.1. The clustering of particles on interfaces is important because 

it modifies the interfacial properties of the two-phase system and is used in many flotation based 

extraction and separation processes (Gerson, Zaijc and Ouchi 1979). More recently, this effect has been 

used for the self-assembly of submicron sized particles on two-liquid interfaces (see Bowden, et al. 

1997,1999, Grzybowski, et al. 2001, and references therein).  

 

(a)  
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(b)  

(c)  

Figure I.1. (WBJ 2003) Capillary attraction of floating particles. (a) Neutrally buoyant copolymer particles of 
nominal diameter 0.1 cm cluster in water/air interface. (b) Heavy aluminum disks (short cylinders with circular 
cross sections) hanging in water/air interface at the sharp rim. The distributions of 14 particles at 0 second (left), 
after 60 seconds (middle) and after 200 seconds (right) are shown. The diameter of the disks is 0.3175 cm and its 
height is 0.15875 cm. (c) Heavy aluminum bricks with square cross sections hanging in water/air interface at the 
sharp corners. The distributions of 14 particles at 0 second (left), after 142 seconds (middle) and after 220 seconds 
(right) are shown. The dimension of the bricks is 0.3175 cm × 0.3175 cm × 0.15875 cm. The attractive power of 
capillarity on floating particles is very long range and the accelerations in the final stage of clustering are 
exceedingly large. Movies of these experiments can be viewed at 
 http://www.aem.umn.edu/research/particles/floating/. 

 

The motion of tea leaves towards or away from the wall, in the above example, is entirely due to the 

deformation of the meniscus near the cup wall. The clustering of particles, on the other hand, is a 

consequence of the interface deformation caused by neighboring particles. Specifically, when two heavy 

hydrophobic spheres are close to each other the deformed interface around the spheres is not symmetric 

because the interface height between the spheres is lowered by the capillary force; on the other hand, 

lighter-than-water hydrophilic spheres will rise as shown in figure I.2. In both of these cases, the lateral 

component of interfacial tension is attractive and the spheres tend to cluster. But, when one sphere is 

hydrophilic and the other is hydrophobic, the lateral force at short range is repulsive and tight clusters 

cannot form. 
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Figure I.2. Spherical particles in water. (a) heavier-than-water hydrophobic spheres. The meniscus between the 
spheres is below the undisturbed level. Assuming that the contact angle remains fixed, the horizontal component of 
capillary force moves them toward each other. (b) Lighter-than-water hydrophilic spheres will rise into the elevated 
section of the meniscus and come together.  

The literature on capillary attraction is cited by Kralchevsky and Nagayama 2000 and Saif 2002, here 

in section III, and in the paper on capillary attraction of particles embedded in a thin film rimming the 

inside of a rotating cylinder by Joseph, Wang, Bai, Yang and Hu 2003. These works do not treat the case 

of capillary attraction of particles pinned to the interface at a sharp edge which is one of the main subjects 

in this paper.  

Problems of evolution to equilibrium of heavier-than-liquid floating particles may be studied by direct 

numerical simulation (DNS); this simulation method fills a gap identified by Gifford and Scriven 1971 

who note that  

“casual observations… show that floating needles and many other sorts of particles do indeed come 

together with astonishing acceleration. The unsteady flow fields that are generated challenge analysis by 

both experiment and theory. They will have to be understood before the common-place ‘capillary 

attraction’ can be more than a mere label, so far as dynamic processes are concerned.”  

The basic facts about the equilibrium of single particles are discussed in section II and new 

experiments on the equilibrium depth of disks pinned at their edges are presented. The prior literature on 

capillary attraction is briefly reviewed in section III. In section IV we set out the equations which govern 

the motions of floating particles and introduce the basic dimensionless groups which characterize these 

motions. In section V, we outline the numerical method stressing only those details which are new. 

Readers interested in constructing or improving the numerical algorithm used in this study can find a 

detailed description in the appendix. In section VI, we compute the solutions of the initial value problems, 

starting from rest, for one, two and four spheres with contact angle prescribed. In section VII, we compute 
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the solutions of the initial value problems, starting from rest, for one and two disks pinned at their sharp 

edges. The solutions are compared with experimental data.  

 II. Floating particles which should sink 

In this section we consider the forces that determine the equilibrium depth of a floating particle. 

Princen 1969 gave an excellent analysis of this problem for a sphere and prismatic particles with sharp 

edges. Keller 1998 generalized this analysis for smooth bodies of arbitrary shape. Kotah, Fujita and Imazu 

1992 used the floating ball to measure contact angles. 

 Floating particles which should sink are held up by capillary forces at the line of contact of the 

three phases on the particle surface. The hanging depth between the contact line and the highest point on 

the meniscus depends on whether the meniscus attaches to the particle on the smooth surface with 

uniquely determined normal or at a corner or edge where the normal is undefined. Here we show that the 

hanging depth is determined by the position of the contact line on a floating sphere when the contact 

angle is fixed by the Young-Dupré law, and by the value of the contact angle which changes with the 

weight of the particles when the contact line is pinned at a sharp edge. 

 

II.1 Floating particles with sharp edges 

It is well known, but not well understood, that liquid-air-solid interfaces tend to locate at sharp edges. 

This mechanism allows a prismatic disk or cube to float with contact line pinned to its sharp rim. Even 

when a downward vertical force is applied by adding weights onto the top surface of a floating disk, as 

discussed below, the contact line remains pinned to the rim.  

Obviously, a prismatic particle which is denser than the liquid below can float only if the vertical 

component of interfacial tension is sufficiently large to balance its buoyant weight and will sink when this 

is no longer true.  

 

A B 

DC 

α 

α 
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Figure II.1. The vertical component of capillary force for the disk does not change when the contact line moves 

from AB to CD, for two different floating heights, because the contact angle α is fixed. For a sphere, the vertical 

component of the capillary force changes as the contact line moves on its surface.  

 

The effects of the buoyant weight may be isolated in the case of a circular cylinder or disk, with axis 

vertical, which is suspended with the contact line on a circle perpendicular to the cylinder generator (see 

figure II.1). The contact angle is fixed by the Young-Dupré law and does not change even as the contact 

line sinks due to change in the cylinder buoyant weight. The cylinder can be denser than the liquid 

provided that the vertical capillary force is just large enough to balance its buoyant weight. If the 

cylinder’s weight is increased, it will sink further and the contact line on the smooth surface will move 

upwards. But, the vertical component of capillary force will not change because the angle between the 

interface and the horizontal, which only depends on the contact angle, does not change when the cylinder 

sinks (see figure II.1). Consequently, the maximum interfacial deformation, the vertical distance between 

the contact line and the highest point on the meniscus, will also not change as the cylinder sinks. The 

buoyancy force acting on the disk, however, increases, as it sinks into the liquid below. Disks of different 

weight in air, with same contact angle and buoyant weight can be suspended as in figure II.1. 

 

 

Figure II.2. Effect of changing the buoyant weight on the contact angle at the rim of a cylinder. The contact 

angle is the same for a sphere (a) and disk (b) when the buoyant weights are the same. Increasing the buoyant 

weight leads to larger contact angles which have larger vertical components of the capillary force as shown in (b), 

(c) and (d). In the experiments of (WBJ 2003) the cylinder would sink when 090~≤ψ ; however theoretically the 

cylinder can float with 090>ψ  (Hesla and Joseph 2003). 

 

 
1ψ  1ψ 2 1ψ >ψ 0

3ψ 90≈

W1 W1 
W2 

W3 

(a) (b) (c) (d)
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At a critical value of the disk weight, the contact line moves from the smooth surface to the sharp 

edge. If the disk weight is increased further, the contact line remains pinned at the sharp corner for a 

range of weight, even though the disk continues to sink further (see figures II.2-II.5). A heavier-than-

liquid disk can float with the interface pinned to the sharp edge, as in figure II.2, provided the vertical 

component of the capillary force is large enough to balance its buoyant weight. In this paper, we will 

study the dynamics of floating disks in this state. 

 

        
                              (a)                                                                    (b) 

Figure II.3. (WBJ 2003). Two photos of floating Teflon disks of density ρs=1.4g/cc held at the contact line in water 
of density ρf=1g/cc. Both disks have a diameter of 0.8 cm; the height from the bottom of the disk to the contact line 
is 0.4cm in (a) and 0.8 cm in (b). The contact angle in (b) is larger than that in (a) in order to satisfy the force 
balance. The image of the disk projecting above the contact line is a reflection in the surface of the water. 

        
                            (a)                                                                     (b)     

 
(c) 
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Figure 4 (WBJ 2003). (a) The meniscus for a Teflon cylinder of density ρs=1.4g/cc hanging from a flat edge in 
water.  (b) An aluminum plate can float in water hanging from the sharp edge; when weighted by a Teflon ball, the 
plate still floats but the hanging depth increases. (c) A floating glass plate is held at the sharp edge in water. 
Spheres of aluminum and glass will sink in water, provided that the spheres are not so small that the surface tension 
will dominate the buoyant weight. The contact angle on the hydrophilic glass plate and the hydrophobic Teflon plate 
is determined by their buoyant weight and not by wettability.  

 

  
    (a)      (b) 
 

Figure II.5 (WBJ 2003). (a) A cartoon for the experiment determining the critical contact angle at the sharp edge. 
See section II.5 for details of the experiment. (b) A photo from the video showing that the contact angle reaches 90° 
at a moment just before the disk sinks. The square, solid black part in the photo, is the disk and the bright part is 
water. 

 

II.2 Gibbs Inequality 

This pinning of the contact line at the disk edge appears to be conflict with the Young-Dupré law 

which states that the equilibrium contact angle between a liquid, a gas and a solid wall is constant 

γLG cos α  = γSG – γSL, 

where α is the contact angle and γLG, γSG and γSL are the interfacial energy between liquid and gas, 

solid and gas, and solid and liquid, respectively. To ensure that the equilibrium contact angle is fixed, 

when the interface at a small distance away from the contact line moves the contact line must also move. 

But, since the normal at the corner is not defined, Young-Dupré law is not violated provided the contact 

angle α at the corner, as shown in figure II.6, stays within the range specified by the Gibbs extension to 

Young-Dupré law:   

α0 < α < 180-φ + α0         

where φ is the wedge angle and α0 is the equilibrium contact angle for the vertical face (see Gibbs 

1906 and Princen 1969). 
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Figure II.6. Two limiting angles for the Gibbs extension to Young-Dupré law which states that the contact angle 

α at the sharp edge can take any value between  α0 and 180-φ + α0.  

 

II.3 Vertical force balance in equilibrium  

The analysis of the forces which keep a sphere suspended in the interface between fluids was given 

first by Princen 1969, then by Rapacchietta and Neumann 1977, and Kotah, Fujita and Imazu 1992, who 

used the floating ball to measure contact angles. A detailed discussion of the vertical balance of a ball in 

equilibrium can be found in Joseph et al. 2003. The analysis of the forces which keep a heavy disk 

suspended in the interface at the sharp upper rim of the disk was given by Hesla and Joseph 2003, 

following an earlier analysis of Princen 1969 for a prismatic particle. 

For equilibrium, the buoyant weight of particle must be equal to the vertical component of the 

capillary force. If the particle density is larger than that of both fluids, equilibrium is possible only when 

the particle is hydrophobic and the vertical component of capillary force is large enough to balance its 

buoyant weight. The interface shape in this case is concave down and the net capillary force acts against 

gravity. 

 

Force balance for a sphere 

         The conditions for equilibrium of a floating sphere can be framed with the help of the cartoon in 

figure II.7.  The vertical component of capillary force CF  depends on the particle radius R, the surface 

tension coefficient γ , the filling angle θ c and the contact angle α , and is given by 

 ( ) ( )[ ]α−π−θγθπ= ccC sinsinR2F  ( ) ( )α+θγθπ−= cc sinsinR2 . (II.1) 

The above expression holds for both the hydrophobic and hydrophilic cases.  

α 

φ α0 

180-φ+α0 
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Figure II.7 (Joseph et al. 2003). Hydrophobic and hydrophilic particles in equilibrium. The position of the contact 
ring determines the angle θC. The point of extension of the flat meniscus on the sphere determines the angle θ1 . 
h2=R (cosθc – cosθ1). 

 

The weight mg of a heavy particle in equilibrium is balanced by a capillary force Fc and net 

pressure force Fp satisfying: 

  gFF mpC =+ ,         (II.2) 

where Fc is given by II.1. pF  is the pressure force given by 

 ∫ θθπθ=
θc

0
p Rd)sinR2(cospF  (II.3) 
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where h2 is the meniscus height, and ρL is the density of the lower liquid and ρa is the air density. 

Substituting into (II.2) we get 
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4m ρπ= , the above expression may be expressed in a dimensionless form as 
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where B = ρLR2g/γ  is the Bond number and l1 = ρp /ρL and l2 = ρa /ρL are the density ratios.  

 The capillary force acts against gravity only when π−α+θC  is positive, in which case  

( )α+θCsin <0, otherwise it acts in the same direction as gravity. For example, if 43π=α , a heavy 

sphere will float with 4/C π>θ . For 4/3π=α  and 4/C π=θ , the force CF  is zero and there is no 

interface deformation (see figure II.8).  Fc increases when Cθ  is increased from 4π  and reaches its 

maximum value at 9.1C ≈θ  and then decreases with increasing Cθ . On the other hand, when the contact 

angle is π, CF  is always non-negative and its maximum value is for 2/C π=θ , i.e., the sphere half 

immersed in the lower liquid. The buoyant weight of the particle, of course, also changes with Cθ .  
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Figure II.8.  For the contact angle 4/3π=α , ( ) ( )α+θθ cc sinsin  is plotted as a function of Cθ . Notice that 

the vertical component of capillary force CF  given by (II.1) is negative for Cθ < 4/π  and maximum for 9.1C ≈θ  

radians=~109º. 

 

Force balance for a disk  

The force balance for the disk is given by (II.2). From figure II.9 it is clear that 

 Fc=2πRγ sinψ         (II.6) 

 Fp = (P0 – Pa)πR2 )hh(g 2L +ρ=  πR2      (II.7)  

 
Figure II.9. Heavier than liquid disk hanging from a flat edge. The capillary force is given by Fc=2π Rγ sinψ, where 
γ is the interfacial tension. The meniscus is z = h(r); h(∞)=h2 is the highest value of z on the meniscus. Pa is air 
pressure and P0 is the pressure at the bottom of the disk z = -h. The disk may be weighted by heavy balls in the cone 
shaped cavity, increasing h2 and ψ  without sinking. 

 

Substituting into (II.2), we get  

 2πRγ sin ψ + ρLgV + πR2h2ρLg = mg,      (II.8) 

ψ 
Pa 

P0 

h2 

h 

R

z
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where V=πR2h is the volume of the disk. The angle ψ=α-90, where α is the contact angle, is measured 

from the horizontal. The dimensionless form of (II.8) is given by 

 sin ψ = ( ) ⎥⎦

⎤
⎢⎣

⎡ −−
R
h

R
h1

2
1B 2

1l .       (II.9) 

 The meniscus height h2 is determined from the solution of the meniscus equation  
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where the origin (z, r)=(0,0) is in the plane at the center of the circle of radius R defined by the 

contact line. The integration starts at (z, r)=(0,R) where  

 h’(r)=tan ψ.         (II.11) 

Far from the particle, the meniscus is flat and  

 { } { }2
r

h,0)r(h),r(hrlim =′
∞→

.       (II.12) 

 For a cylinder, the values of ψ and h2 can be determined from the solution z=h(r), using (II.8) 

together with 

 [ ] ψγ=∫ −ρ
∞

sinRdrr)r(hhg
R

2        (II.13) 

which follows from (II.9), (II.11) and (II.12).  

 Hesla and Joseph 2003 worked an exact numerical solution of the problem just considered; they 

gave a simple mathematical argument that as the weight of the floating disk is gradually increased (figure 

II.2), the maximum contact angle at the sharp rim which is attained before the disk sinks is greater than 

90º. They presented numerical results which support this conclusion. Though such solutions are allowed 

by the equilibrium analysis, they have not been observed. It may be that configurations with contact angle 

greater than 90º are unstable (see figure II.5). 

 

II.4 Small particles, large particles and heavy particles 

The left side of equation (II.5), and thus also the right side, lies in the range 

( ) 1sinsin1 CC ≤α+θθ≤− . Obviously, (II.5) cannot be solved if B is too large which may be the case 

when the sphere is too heavy or too large.  Similarly, for a floating disk if B is too large, (II.9) cannot be 

solved; the disk will sink when the capillary force is not large enough to balance its buoyant weight. 
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Figure II.10. The deformation of the interface due to floating sufficiently small spheres or disks is negligible. A 

small hydrophobic sphere will float with α−π≈θC  so that interfacial deformation is negligible even if it is denser 

than the liquid below. A small less dense hydrophilic sphere also does not  deform the interface. Similarly, a small 

dense hydrophobic disk floats on the surface with negligible penetration into the liquid.. A small hydrophilic disk 

which is less dense than the lower liquid does not deform the interface and it is kept inside the lower liquid by the 

capillary force which acts downwards.  

 

          As R approaches zero, the capillary force, which varies linearly with R, dominates the buoyant 

weight of the sphere which varies with R3. In this limit since the Bond number B= 0gR 2
L →γρ , the 

right hand side of (II.5) is zero and thus sin (α + θC) ≈  0 or α−π≈θC  (see figure II.10). We may 

therefore conclude that heavy small particles can be suspended without causing significant interfacial 

deformation when B is small. Krahshesky, et al. 1992, 1993 noted that for particles floating on water this 

limit is approximately reached when their diameter is 10 µm. Hence, the lateral capillary forces, which 

arise from interfacial deformation, are also insignificant when the particle diameter is smaller than 10 µm. 

Similarly, if volume of the disk approaches zero, the capillary force, which varies linearly with R, will 

dominate its buoyant weight which varies as hR2. In this limit, the right hand side of (II.8) is zero and 

sinψ ≈  0 or 0=ψ . The disk therefore does not deform the interface, and floats with its top surface in the 

plane of the interface (see figure II.10). 

The vertical component of the capillary force for the two positions in figure II.1 can be zero only if 

the contact angle α is 90º. This implies that a small hydrophobic (α>90º) disk must float on its bottom 

edge, as shown in figure II.10; it cannot be suspended as in figure II.1. When the contact line is pinned to 

an edge the contact angle can take any value, between the two values specified by Gibbs inequality. The 

 

Small hydrophobic sphere Small hydrophilic sphere

θc 
θc 

 
 

Small hydrophobic disk Small hydrophilic disk
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argument just given applied to all cases in which the Bond number is small, to particles with other shapes, 

like cubes and to lighter and larger particles.  

When particles are partially immersed in a thin liquid film and their weight is supported by the 

substrate below, the arguments just given are not applicable and the interface deformation can be 

significant even for small particles. Kralchevsky and Nagayama 2000 have shown that in thin films the 

particle-particle attraction force increases with decreasing particle size. 

 

II.5 Experiments on floating disks pinned to the interface at the sharp edge (WBJ 2003) 

 

WBJ used a 3.38g Teflon cylinder with a cone cut in the center. 0.25 g steel beads were put in the 

cone to change the weight (see figure II.9).  The radius, height and volume of the disk are [1.27 cm, 0.495 

cm, 2.51cc]. The angle ψ and the depression h2 were measured using a video camera. Measurements were 

taken at several azimuthal positions and the average value ψ and h2 recorded. After inserting the 

measured parameters into the force balance equation (II.8), the difference between the measured vertical 

force and the particle weight, the residual e was computed: 

e = ( )2
2

l hhRgsinR2mg +πρ−ψγπ−       (II.16) 

m(gram) 3.38 3.63 3.88 4.13 4.38 
ψ (degree) 28.4 37.8 43.0 51.7 71.1 

H2(cm) 0.130 0.176 0.206 0.255 0.302 
2πRγ sinψ/mg(%) 5.27 6.31 6.58 7.11 8.08 

lρ gh2πR2/mg(%) 19.44 24.54 26.94 31.34 34.98 
|e|/mg(%) 1.03 0.01 1.8 0.77 0.36 

 
Table II.1 (WSJ 2003). Quantities entering into the force balance equation (II.8). The residual e is computed from 
(II.16).  The values of e are small. 

 

Table II.1 shows that the contact angle at the rim increases when the weight of the particle is 

increased. A maximum weight can be held in this manner; beyond this weight the particle will sink. WBJ 

did experiments to determine the critical contact angle corresponding to this maximum weight. The 3.38g 

Teflon disk with a cone cut in the center was used. The contact angle was gradually increased by pushing 

the disk down into the water with a needle (see figure II.5). A video camera was used to record the whole 

process and the critical contact angle was determined using the video replay. The contact angle increased 

up to 90° while the contact line was pinned at the rim (see figure II.2); when the needle was pushed 

further down, the contact line moved away from the sharp edge to the flat top of the disk, and the disk 
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sank instantaneously. They concluded that the critical contact angle corresponding to the maximum 

weight which could be held at the sharp edge is 90°. Hesla and Joseph 2003 have shown that that the 

equilibrium solution for this problem allows contact angles larger than 90º; the vertical component of the 

capillary force decreases while the buoyant force increases maintaining the balance.  These larger contact 

angles may be unstable. 

 

III. Motion due to the capillarity of floating particles on liquid surfaces 

The deformation of a fluid-fluid interface due to floating or trapped particles gives rise to lateral 

capillary forces. A simple explanation is given in figure I.2. A heavier-than-liquid particle will fall down 

a downward sloping meniscus while an upwardly buoyant particle will rise. 

There are several ways to isolate the effects of capillarity uninfluenced by gravity (see Joseph et al. 

20003). Poynting and Thompson 1913 investigated the capillary effect by considering two vertical plates 

immersed in a liquid, the space between the plates is a two dimensional capillary tube. If the plates are 

hydrophobic, the level in the capillary gap sinks below the liquid outside; if the plates are hydrophilic the 

levels will rise. Another way to take away the effects of gravity is to support the particles on a substrate. 

In this case, the horizontal forces are due to capillary effects alone. Katoh, Fujita and Imazu 1992 studied 

the motion of a particle floating on a liquid meniscus surface which could be interpreted as motion on a 

substrate because the foaming phlystyrol particles used by them are an order of magnitude lighter than 

water, and minimize the effects of gravity compared to capillarity. Their experimental results are 

completely consistent with the predictions of Poynting and Thompson: when the sphere and the wall are 

alike with respect to wetting, say both are hydrophobic or hydrophilic, the wall and sphere attracts; when 

they are unlike the sphere and wall repel.  

There are only a few theoretical studies of capillary attraction. Nicolson 1949 was the first to derive 

an analytical expression for the capillary force between two floating bubbles by using the superposition 

approximation to solve the Laplace equation of capillarity. A similar approximate method was applied by 

Chan et al. 1981 to floating spheres and horizontal cylinders. For horizontal cylinders the alternative 

approaches were proposed by Gifford and Scriven 1971 and by Fortes 1982. The theoretical works are 

based on solutions of the Laplace equations for capillary menisci with translational or rotational 

symmetry, where the Laplace equation reduces to an ordinary differential equation. Saif 2002 constructed 

an interesting analysis of the capillary interaction of long plates with round ends at prescribed heights 

which do not float. 
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For the case where the meniscus slope and the particle size are small, the Laplace equation for the 

interface shape was solved using bipolar coordinates by Krahshesky, et al. 1992, 1993. This solution 

provides expressions for calculating the capillary meniscus force between two vertical disks, between two 

spheres partially immersed in a liquid layer and between a vertical disk and a sphere. Specifically, 

Kralchevsky and Nagayama 2000 have shown that the lateral force Fl acting on particles of radii R1 and 

R2 separated by distance L is equal in magnitude and opposite in sign and is given by 

[ ])Rq(O1)qL(qKQQ2F 2
k

2
121l +π−=   when L >> rk.                                                         (II.17) 

Here )sin(Rr ckk θ= , k=1, 2 are the radii of the two contact lines as shown in figure II.7 (where the 

particle radius is assumed to be R), kkk sinrQ ψ= , where kψ  is the interface slope with the horizontal 

plane at the point of contact, γρ−ρ= g)(q pl  is the inverse of the capillary length, K1(x) is the 

modified Bessel function of the first order. (II.17) is valid for particles much smaller than the capillary 

length. The force acting between two floating particles decreases with increasing distance them. 

The analysis just given is useful for determining the parameter values for which the particles can 

remain trapped on two-fluid interfaces, as well as the sign and magnitude of forces that act between two 

suspended particles, but to understand the actual motion of particles on the interface we must solve the 

governing equations of motion. Since the governing equations are complex, the dynamic behavior of fluid 

and particles is not well understood.  

A small number of theoretical studies have looked at the drag and diffusion coefficient of a spherical 

particle attached to a fluid interface (Brenner and Leal 1978, 1982; Goldman, Cox and Brenner 1967; 

Schneider, O’Neill and Brenner 1973; Majumdar, O’Neill and Brenner 1974 and Wakiga 1957; Redoev, 

Nedjalkov and Djakovich 1992; Danov, Aust, Durst and Lange 1995). Brenner and Leal have shown that 

the drag FD acting on a floating sphere in the zero Reynolds number limit is DxD fDU3F πη= , where Ux is 

the lateral velocity of the sphere, D is the diameter, fD is the drag coefficient which is O(1) and depends 

on the ratio of viscosities of the upper and lower fluids. 

The only experimental study for determining drag coefficients of floating particles is by Petkov, 

Denkov, Danov, Velev, Aust and Durst 1995.  They calculated the drag coefficients for particles of sub-

millimeter radius by measuring the particle velocity under the action of a well defined external force. 

They showed that the capillary interactions are quite strong and very long range. Danov, Aust, Durst and 

Lange 1995 performed numerical simulations to obtain the drag coefficients for floating spheres, but they 

assumed that the interface between the two fluids stays flat and the particle translates with a constant 

velocity along the interface.  
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To understand the dynamics of clustering and self assembly of particles due to capillarity, we 

have developed a numerical package which treats the problem by direct numerical simulation. The 

method is as exact as numerical methods allow; in particular, the changing shape of the meniscus and the 

hydrodynamic forces which move particles are computed and not modeled. At each time step, we solve 

the governing mass and momentum conservation equations for the two fluids, compute the forces acting 

on the particles and then move them using Newton’s equations for rigid solids. The interface shape 

changes in response to the fluid motion while satisfying the contact angle or contact line requirement on 

the particle surface. In addition, across the interface the fluid properties change suddenly and a capillary 

force acts between the two fluids. 

We have performed dynamic simulations of spherical particles for which the contact angle is 

maintained at the equilibrium value and the position of the contact line changes, as well as for floating 

disks with sharp edges. For floating disks, the meniscus remains pinned at the rim even when the disk 

moves relative to the interface, but the contact angle at the rim changes. In our numerical study it is 

assumed that the interface is initially flat and the top surface of the disk is in the plane of the interface. As 

the disk is denser than the liquid, it sinks but the contact line remains at the rim. Consequently, the 

interface near the rim becomes more vertical increasing the vertical component of the capillary force. In 

our code, the contact line is kept at the sharp edge of a floating cylindrical particle by making the level set 

function vanish on the rim. 

 In the next section we will state the governing equations for the fluids and the particles, briefly 

describe the level set and distributed Lagrange multiplier approaches and present our finite element 

method. A detailed description of the numerical method is included in the appendix. In section VI, we 

will discuss the convergence study that shows that the numerical results are independent of the mesh size 

as well as the time step size and present results for the transient motion of particles along two-fluid 

interfaces. 

 

IV. Governing Equations and dimensionless groups 

  In our numerical studies of particle motion in two-fluid interfaces we will assume that the fluids 

are immiscible and Newtonian. The particles are assumed to be rigid. Let us denote the domain containing 

the two liquids and N particles by Ω, the domain boundary by Γd, and the interior of the ith particle by 

Pi(t). The governing mass and momentum conservation equations for the fluid phases can be written as 

ρ ⎥⎦
⎤

⎢⎣
⎡ ∇

∂
∂ uuu   . + 

t
  = ρ g - ∇p + ∇.σ +γ κ δ(φ) n; ∇. u = 0  in Ω\ P(t)    (IV.1) 

u = uL  on Γ d         (IV.2) 
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u = U + ω x r on )t(P∂         (IV.3) 

with the extra stress tensor σ =2ηD, ρ is the fluid density which is different for the two fluids, p is the 

pressure, D is the symmetric part of the velocity gradient tensor, δ(.) is the Dirac delta function, n is the 

outer normal at the interface, γ is the surface tension, κ is the mean surface curvature, φ is the distance 

from interface, η is the viscosity which is different for the two fluids and uL is the prescribed velocity on 

Γd. The surface tension force acts along the interface between the two fluids. 
The particle velocity U and angular velocity ω are governed by  

 FgU
+= M

dt
dM          (IV.4) 

( )
T

ωI
=

dt
d P           (IV.5) 

 00t| UU ==            

 00t| ωω ==           (IV.6) 

where M and IP are the mass and moment of inertia of the particle. The particle density is denoted by Pρ .  

The force F acting on a particle in the above equations is 

 F = ∫+∫ +−
.L.C

dsdA).p( ΓnσI         (IV.7) 

The first term on the right of (IV.7) is the force on the particle due to stresses generated by fluid motion; 

the second term  

 ∫=∫
C.L. c.C.L

dsnΓ γds           (IV.8) 

is the capillary force, cnΓ γ=  is a line stress on the contact line (C.L.) and nc is the capillarity unit 

vector which lies in the interface and is normal to the contact line. This unit vector gives the direction of 

the action of the capillary force. A numerical algorithm for constructing nc is given in section 5. 

Similarly, the torque T acting on the particle is given by 

 T = [ ] ∫ ×−+∫ +−×−
.C.L

ds)(dA).p()( ΓXxnσIXx .      (IV.9) 

Here X is the center of particle, the first term gives the torque due to the fluid stress and the second due to 

the capillary force acting on the contact line. For a spherical particle, which is one of the cases considered 

in this paper, if the interfacial tension γ  is constant, the torque due to the interfacial tension is zero (see 

Singh and Hesla 2003).   

 The shape of the meniscus must be compatible with conditions which are prescribed at the 

contact line on every particle and at remote boundaries; for spherical particles the contact angle α is 

prescribed (see figure II.7), but the contact line evolves during motion. For disks hanging at the sharp 
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edge, the position of the contact line is prescribed and the contact angle changes. At remote boundaries 

different conditions could be considered, but in our simulations we have required the interface to be flat 

there. The motion of particles in fluid interfaces is very complex because the prescribed value of the 

contact angle is to be applied at the contact lines whose positions cannot be prescribed a priori and at the 

sharp edges the contact angle is not known a priori. 

A particle placed in a two-fluid interface can be in a state of equilibrium provided its buoyant 

weight is equal to the z-component of capillary force. The capillary force changes when the particle sinks 

or rises or the interface deforms to satisfy the contact angle requirement. Clearly, for a particle moving 

laterally along the interface, the vertical acceleration is small, and thus the z-component of (IV.4) is  

 ∫+− ⋅γ⋅+−= +∫
.L.C

c dsMg0 dA).p( nkk nσI ,     (IV.10) 

where k is the unit vector in the z-direction. The last term of (IV.14) is the vertical projection of the 

capillary force which depends on the contact angles. For isolated spheres or disks in equilibrium (IV.10) 

and the vertical projection of (IV.1) with u=0 reduce to equation (II.5) or (II.8). 

 The x-component of particle momentum equation, which governs its lateral motion, can be 

written as 

 ∫+− ⋅γ⋅= +∫
.CL

c
x ds

dt
dM dA).p( niiU nσI .     (IV.11) 

where i is the unit vector in the x-direction. The first term on the right hand side is the x-component of 

fluid stress and the second is the x-projection of the integral of cn  around the contact line.  

If we assume that a particle is accelerating slowly, which is the case, for example, when the two 

attracting particles are far from each other, then the two terms on the right hand side of (IV.11) balance 

each other. In the low Reynolds number limit, Brenner and Leal expressed the drag FD acting on a sphere 

moving along the interface as  

 DxLD fDU3F πη=         (IV.12) 

where fD is the drag coefficient which is of order one and depends on the viscosity ratio of the two fluids, 

the contact angle and the deformation of the interface which in turn depends on the density of the particle. 

Under these approximations, equations (IV.11) and (IV.12) give 

 ∫ ⋅γπη= +
.CL

cDxL dsfDU30 ni .       (IV.13) 

Equation (IV.13) can be solved to obtain the lateral velocity xU  of the particles; Ux is proportional 

to
Lη
γ , the “capillary velocity” scale.       
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Petkov, Denkov, Danov, Velev, Aust and Durst 1995 used (IV.13) for estimating the drag 

coefficient for floating spherical particles attracted by a plate. They measured xU  in an experiment and 

used the analytical expression for the horizontal force obtained by Kralchevsky, Paunov, Denkov, and 

Nagayama 1994 which is related to the integral term in the above expression. They found that the drag 

coefficient depends on the viscosities of the upper and lower fluid, as was shown by Brenner and Leal. 

The experimental values of the drag coefficient for several fluid-particle combinations were found to be 

of O(1). The drag coefficient was greater than one for heavy particles, since they cause a greater 

deformation of the interface. They estimated the drag coefficients when the distance between the particle 

and the plate was greater than 35R, where R is particle radius; for smaller distances (IV.17) is not 

accurate because the inertial effects are not negligible. The estimate of the lateral capillary force they used 

is accurate only when the distance between the particle and the plate is large. 

Danov, Aust, Durst and Lange 1995 performed numerical simulations to study the dependence of 

the drag on a spherical particle translating in the interface on the ratio of viscosities. In their simulations, 

it is assumed that the interface between the two fluids is flat and the particle velocity is constant. They 

found that the agreement with experiments deteriorates with increasing particle density because interfacial 

deformation is not negligible.  

 In this paper we study problems for which inertial effects and time dependent changes in the 

interface shape in response to particle motion are important. This happens to be the case when the 

distance between two floating particles is of the order of the particle radius because the interface shape 

changes continuously and the particles accelerate as they move toward each other. 

 The buoyant weight of particles is an important quantity in the description of the dynamics of 

capillary attraction. To see how it enters, we first express gravity as a potential 

 zgg ∇−=−= kg          (IV.14) 

and write  

 p̂p −∇=∇−ρg           (IV.15) 

where  

 gzpp̂ ρ+=           (IV.16)  

In (IV.1), the interface is given by 

 z=h(x,y,t)           (IV.17) 

The contact line can be specified by zc, where h intersects the particle surface. Using (IV.16), we find the 

pressure force acting on the particle  

 ∫∫ ρ−= dA)gzp̂(dAp nn  

  = ∫ dAp̂n - gVgV LLUU ρ−ρ        (IV.17) 
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where VU is the volume of the particle above and VL is the volume below the contact line and 

M= )VV(g LUP +ρ . We may now write (IV.4) as 

 =
dt
dM U [ ] ∫γρ−ρ+ρ−ρ +∫+ +−

.L.C
LLPUUP dscgV)(V)( dA).p̂( nk nσI .  (IV.18) 

The first term on the right hand side of (IV.18) is only a portion the buoyant weight (see equation (II.3)). 

For isolated spheres, with a prescribed contact angle, the contact line will be a circle on the sphere, so that 

the unknowns are VU, VL and zc=h(x,y,t). For the disk hanging on the sharp rim, VU=0, VL=V and the 

contact angle are ψ unknown. Equation (IV.5) can be written as 

 ( )
=

dt
d P ωI [ ] ∫ ×−+∫ +ρ+−×−

.
ds)(γ

C.L
cdA).)gzp̂(()( nXxnσIXx    (IV.19) 

 The scaling parameters for equations (IV.1)-( IV.1), (IV.18) and (IV.19) are 

    [D, U, D/U, ηLU/D, U/D, ρL] = [diameter, velocity, time, stress, angular velocity, density].         (IV.20) 

Here ηL and ρL are the viscosity and density of the lower liquid and D=2R is the diameter of the sphere or 

disk. The dimensionless equations are then in the form 

 ⎥⎦
⎤

⎢⎣
⎡ ∇

∂
∂ uuu   . + 

t
l   =  - ∇ p̂  + 

Re
1

∇.σ + 
We
1  κ δ(φ) n; ∇. u = 0 in Ω\ P(t)   (IV.21) 

 ( ) ( )( ) ∫+−+−−=
β

+∫ +−
.L.C

cLPUUP
p ds

Ca
1VVReG

dt
dRe

dS).p̂( nkU nσI1lll
l

 (IV.22)

 ∫ ×−⎥
⎦

⎤
⎢
⎣

⎡
η
ρ

=
β

+∫ ++−×−
.

l

C.L

ds)(
Ca
1

U
gzD

dt
'dRe

c
L

Pp ds).)p̂(()Xx( nXx
ωI nσI   (IV.23) 

 

where k is the unit vector along the z-direction. The particle mass M=
β

ρ 3
P D

, where 
π

=β
6  for a sphere 

and 
hπ

=β
D4  for a disk with h being the disk height. The particle moment of inertia IP=M 2'

P DI , where '
PI  

is the dimensionless moment of inertia. It can be shown that the term proportional to ρgz in (IV.23) 

vanishes when the particle is a sphere, but does not vanish when the particle is a disk.  

 The dimensionless parameters which define the motion of particles are  

             [Re, G, Ca] = ⎥
⎦

⎤
⎢
⎣

⎡
γ

η
η

ρ U,
U

Dg,UD L
2

L

L    

             = [Reynolds, gravity, capillary] numbers                                                               (IV.24) 

 and the property ratios  
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[l, lp, lU, m]=[
Lρ

ρ , 
L

P
ρ
ρ , 

L

U
ρ
ρ ,

L

U

η
η

]                                                                                         (IV.25) 

where the subscript ‘L’ refers to the lower liquid and ‘U’ to the upper liquid. The density parameter l is 

equal to one in the lower liquid and in the upper fluid it is 
L

U

ρ
ρ

 and the Weber number We =Re Ca. In our 

numerical we use the dimensional equations (IV.1)-(IV.4) where the hydrostatic pressure variation is not 

removed from the pressure.  

The selection of a characteristic velocity U for the definition of the dimensionless parameters in 

(IV.20) is ambiguous since a characteristic velocity is not prescribed in data. A natural choice for the 

velocity is the capillary velocity U=
Lη
γ , which is suggested by other problems of motion driven by 

surface tension. With this choice we may compute 

 [Re, G, Ca] =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

γ
η

η
γρ 1,Dg,D

2

2
L

2
L

L                                                      (IV.26) 

from the prescribed data. 

 

V. Numerical Method 

 In this section we will briefly describe the key features of our numerical scheme. A detailed 

description of the numerical algorithm is included as an appendix.  

To perform direct numerical simulation of the motion of rigid particles trapped in a two-fluid 

interface, we must solve the governing mass and momentum conservation equations for the two fluids, 

compute the forces acting on the particles and then move them using Newton’s equations (IV.4). This is a 

difficult task because the interface shape changes as the particles move and the capillary force between 

the two fluids must be computed subject to the constraint that the contact angle is prescribed on a smooth 

surface and the contact line is prescribed on edges.  

In this study we will assume that the dynamic contact angle is the same as the static contact angle. 

This enforcement of the contact angle on the particle surface causes the contact line to move which may 

be described as a capillary induced motion of the contact line due to a prescribed contact angle (see 

Friedrichs and Guceri 1993 and Sussman 2001 and references therein). At sharp edges, the motion of the 

particles is computed under the constraint that the interface remains pinned to the sharp edges of particles 

so that the contact angle changes as the motion proceeds. The contact angle can vary within the limits 

specified by the Gibbs extension of the Young-Dupré law. 
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In this work the level set method is used to track the interface (see Osher and Sethian 1988, Sussman, 

Smereka and Osher 1994, Pillapakkam and Singh 2001, Sussman 2001). The level set method works 

efficiently on a regular fixed grid and is compatible with the distributed Lagrange multiplier method 

(DLM) which will be used to track the motion of rigid particles (see Glowinski, Pan, Hesla and Joseph 

1999 and Singh, Joseph, Hesla, Glowinski and Pan 2000). The DLM method also works efficiently on 

regular fixed grids. There are several other numerical approaches available for tracking the interface 

between two immiscible liquids, e.g., the surface tracking method (Unverdi and Tryggvason 1992), the 

volume of fluid method (Hirt and Nichlos 1981), the moving grid methods (Glowinski, Tallec, Ravachol 

and Tsikkinis 1992) and the mapping method (Ryskin and Leal 1984) that can be used with the DLM 

method to study dynamics of floating particles.  

In the level set method, the interface position is not explicitly tracked, but is defined to be the zero 

level set of a smooth function φ,  which is assumed to be the signed distance from the interface. In order 

to track the interface, the level set function is advected according to the velocity field. One of the 

attractive features of this approach is that the method does not require any special treatment when a front 

splits into two or when two fronts merge. 

The key idea in the level-set method is to advect φ with the local velocity, i.e., 

0
t

=φ∇+
∂
φ∂ .u .          (V.1) 

As φ is a smooth function, it is relatively easy to numerically solve the above equation to update the 

interface position. In our implementation, it is assumed to be negative for the upper fluid, positive for the 

lower fluid and zero along the interface. The method also allows us to enforce the contact angle on the 

rigid particle surfaces and it is relatively easy to implement it in both two and three dimensions. 

 The motion of particles is tracked using a distributed Lagrange multiplier method (DLM). One of 

the key features of the DLM method is that the fluid-particle system is treated implicitly by using a 

combined weak formulation where the forces and moments between the particles and fluid cancel, as they 

are internal to the combined system. The flow inside the particles is forced to be a rigid body motion 

using the distributed Lagrange multiplier method. This multiplier represents the additional body force per 

unit volume needed to maintain rigid-body motion inside the particle boundary, and is analogous to the 

pressure in incompressible fluid flow, whose gradient is the force needed to maintain the constraint of 

incompressibility. 

In our numerical scheme the Marchuk-Yanenko operator splitting technique is used to decouple the 

difficulties associated with the incompressibility constraint, the nonlinear convection term, the rigid body 

motion constraint and the interface motion. The operator-splitting gives rise to the following four sub-
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problems: a L2 projection problem for the velocity and the pressure; a nonlinear advection-diffusion 

problem for the velocity; a distributed Lagrange multiplier problem that forces rigid body motion within 

the particles; and an advection problem for the interface. Details of this method are set down in the 

appendix. 

V.1 Reinitialization of φ 

The level set function φ is reinitialized to be a distance function after each time step by solving 

the following equation obtained in Sussman, et al. 1994 to the steady state 

 )(S
t 0φ=φ∇+

∂
φ∂ .w         (V.2) 

where φ0 is the distribution to be reinitialized and  

 
φ∇
φ∇

φ= )(S 0w . 

Here S(φ0) is the sign function, i.e., S(φ0) = 1 if φ0 > 0 and S(φ0) = -1 if φ0 < 0. In order to avoid 

discontinuities, in our code we use the following smoothed sign function 

 
2
e

2
0

0
0

h
)(S

+φ

φ
=φ , 

where he is equal to one and half times the element size. Equation (V.2) is a first order hyperbolic partial 

differential equation which is solved using a positive only upwinding scheme described in Singh and Leal 

1993. Clearly, the characteristics of (V.2) point in the direction of w.  Therefore, for the points inside the 

upper fluid w points upwards away from the interface and for the points inside the lower fluid it points 

downwards. Thus, (V.2) can be solved by specifying the boundary condition φ = φ0 at the two-fluid 

interface φ = 0.  

 

V.2 Variation of fluid properties across the interface 

In our finite element scheme the fluid viscosity is assumed to jump across the interface, i.e., 

            ηL   if φ > 0 

=η    0.5(ηL + ηU) if φ = 0        (V.3) 

            ηU   if φ < 0. 

Here ηL and ηU are the viscosities of the lower and upper fluids, respectively. The fluid density, on 

the other hand, is assumed to vary smoothly across the interface 
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              ρL      if φ > he 

=ρ  ρU      if φ < -he    (V.4) 

 0.5(ρL + ρU )+ 0.5(ρU - ρL) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ πφ

eh2
sin  otherwise 

where he is equal to one and half times the element size, and ρL and ρU are the densities of the two 

fluids, respectively. This smoothing of the density is similar to that used by Sussman, et al. 1994, and is 

needed for avoiding numerical instabilities when the density ratio ρL/ρU is large.  

The surface tension force is smoothed and acts only on the elements for which φ is smaller than 

he. This is done by approximating δ(φ) in (IV.1) by a mollified delta function )(eh φδ  using the approach 

described in Sussman, et al. 1994: 

)(
eh φδ = 

e

e
h2

)h/cos(1 πφ+  for |φ| < he    (V.5)  

  0   otherwise 

 

 The error introduced by smoothing of the surface tension force is O(he). Equations (V.4) and 

(V.5) require that φ be maintained as a distance function which we do in our implementation by 

reinitializing φ after each time step. 

V.3 Contact angle and contact line conditions 

The contact angle boundary condition on the particle surface, n.nφ =cos α, where n is the unit 

outer normal on the particle surface and 
φ∇
φ∇

=φn  is normal to the interface, is enforced using the 

approach described in Sussman 2001. Sussman used this approach to prescribe the contact angle on a 

stationary flat wall by extending φ to the "outside" of the fluid domain. In this article the same approach is 

used to prescribe the contact angle of the two-fluid interface on the surface of a moving sphere. Let us 

define t and n2 as  

., 2 nt
ntn

nn

nn
t

×
×

=
×

×
=

φ

φ  

Notice that t is tangent to the contact line, and thus n2 is orthogonal to the contact line and lies in the 

tangent plane of the particle surface (see figure V.1a). The next step is to construct a unit vector uex which 

is tangent to the interface with contact angle α, points inwards, and lies in the plane formed by n and n2; 
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nc = -uex is the unit vector which gives the direction of the action of the capillary force. It is easy to verify 

that uex depends on c = nφ.n2 and is given by 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

>
α−π+
α−π+

<
α−π−
α−π−

=

0cif

0cif
)cot(
)cot(

0c if
)cot(
)cot(

2

2

2

2

ex

n
nn
nn
nn
nn

u        (V.6) 

 

 
V.1(a) 

 

      1350 

Contact line  

Tangent plane at the point of 

contact 

n̂

φn̂  Interface 
t̂  

n2 



Printed 1/21/2005 12:40:00 PM XVI-65 DDJ/2002/papers/MotionParticles/ChapXVI 

 
V.1(b) 

Figure V.1. (a) The unit normal to the particle surface n, the tangent to the contact line t and the normal to the 
interface nφ are shown. (b) A schematic of the interface shape and the contact line are shown for the initial and 
steady states. In simulations the contact angle on the particle surface is prescribed to be 135º which is done by 
extending the level set function to the inside of the particle. The contact line moves downwards because of the 
interface deformation near the particle and this decreases the vertical component of capillary force. 
 

To enforce the prescribed contact angle, φ is extended inside particles and on their surfaces by 

solving 

0
t

=φ∇+
∂
φ∂ .exu .        (V.7)  

In other words, for all nodes inside and on the particle surface (V.7) is used to modify φ. The resulting 

extended level set function satisfies the contact angle on the particle surface.  

  The contact line on the particle surface moves when the contact angle is enforced using (V.7). 

This could be called the capillary induced motion of the contact line due to a prescribed contact angle. 

This approach has been used in many past numerical studies of problems involving moving contact lines 

(see Friedrichs and Guceri 1993 and Sussman 2001 and references therein). For example, in the injection 

molding problems this approach has been used to track the motion of liquid front advancing into empty 

molds. 

Clearly, this motion of the contact line on the particle surface is in conflict with the no slip 

condition for viscous fluids (see Dussan and Davis 1974, Dussan 1976 and Kistler and Scriven 1993 and 

references therein). However, if the contact line position on the particle surface is not updated, the contact 

 

nc=- uex 
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line cannot move. In the capillary induced motion approach the no slip condition is satisfied before and 

after the contact line moves; this pragmatic procedure could be called an effective numerical slip. This 

method of moving the contact line when the contact angle is prescribed has been used by Friedrichs and 

Guceri 1993 and Sussman 2001. An alternative approach used in some studies is to use a slip condition in 

a small neighborhood of the contact line to ensure that it moves (see Kamal, Goyal and Chu 1988 and 

references therein). The slip velocity of the contact line is assumed to be proportional to the shear stress 

on the wall. This approach however does not ensure that the contact angle remains constant. Another 

aspect of the floating particle problem not treated here is that the contact angle for advancing and 

receding contact lines is different which can change the dynamical behavior of floating particles.  

 

VI. Initial value problems for the evolution of floating particles to equilibrium 
 
  Here we report results of simulations of initial value problems for sphere and disks which are 

initially motionless, but not in equilibrium, to an equilibrium in which they are again motionless. The 

particles are heavier than the heavy liquid below and they float. Initially, the particles are motionless and 

imbedded in a flat interface; the spheres are centered with their midplane in the interface and the contact 

angle fixed and held at 135º throughout the simulation. The assumed value of the contact angle is likely to 

be insensitive to the contact line speed in real experiments, as it is relatively large. Disks are pinned at the 

sharp edge of the upper rim throughout the simulation. 

  We do simulations for one sphere, one disk, two and four spheres and two disks. Initially, 

particles are not in equilibrium because they are heavy and must sink to equilibrium. For all cases, the 

particles reach an equilibrium in which they are motionless and in a balance between capillary forces and 

the buoyant weight; for single particles, spheres and disks, the computed values at equilibrium can be 

computed with the analytical expressions (II.5) and (II.8) and the agreement is satisfactory. The evolution 

to equilibrium for more than one particle takes place by sinking and capillary attraction; at the end the 

particles have self assembled.  

  The conditions under which spheres and disks evolve to equilibrium are different. The interface 

near the spheres adjusts to meet the contact angle requirement and they sink until the buoyant weight 

becomes equal to the vertical component of the capillary force. The disks, on the other hand, sink causing 

the interface to deform and increasing the contact angle and the vertical component of the capillary force. 

The disks stop sinking when the vertical component of the capillary force becomes equal to the buoyant 

weight.  

  An attractive force between floating particles arises because the meniscus between drops in much 

the same way as a water meniscus will sink in a hydrophobic capillary tube. This dropping of the 

meniscus inside relative to the outside produces an asymmetry which generates attractive capillary forces. 
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For spheres, since the contact angle is fixed, the contact line between the spheres drops. For disks, since 

the contact lines are fixed at the rim, the contact angles between the two disks decrease. In both cases, the 

asymmetry results in an attractive lateral capillary force to act on the particles. 

  The domains used in our simulations are box shaped with rectangular cross sections. The 

coordinate system used throughout this paper is shown in figure VI.1. The x-, y- and z-components of 

particle velocity will be denoted by u, v and w, respectively.  

  We will also assume that all dimensional quantities, unless otherwise noted, are in the CGS units. 

The lower fluid density ρL=1.0 gm/cm3. The viscosity of the lower fluid, and the density and viscosity of 

the upper fluid are varied. The particle density is assumed to be greater than one. The values of the 

interfacial tension are selected to ensure that the particle remains suspended in the interface. The 

acceleration due to gravity g=981.0 cm/s2 and acts along the negative z-direction. The initial velocities are 

assumed to be zero everywhere.  

  The no slip boundary condition is applied on the surface of the box shaped computational 

domains. The contact angle between the interface and the box boundaries is assumed to be 90º, the 

interface near the walls is flat.  

  We next present the results for floating spheres and disks, to demonstrate that the scheme works 

correctly, and that it reproduces the expected dynamical behavior and the equilibrium state.  

 

VI.1 Initial value problems for floating spheres 

  In this subsection, we compute the motion of spheres released in the interface; the contact line 

intersects the sphere1 at a place different than one required for equilibrium. The sphere diameter is 

assumed to be 0.2 cm. The initial interface shape is flat, except near the sphere surface where a contact 

angle of 135º is prescribed (see figure V.1). The parameters are in the range for which a sphere trapped on 

the interface can be in equilibrium. The equilibrium interface shape and the floating height depend on the 

problem parameters. 

 

VI.1.1 Motion of a single sphere 

When a sphere is suddenly released in the interface, the meniscus shape evolves to equilibrium. 

During this time, the velocity field in the two fluids is non-zero and the capillary force acting on the 

particle varies; the sphere velocity and its position in the interface change with time. The final equilibrium 

                                                 
1 If the initial particle position was such that the interface did not touch the particle surface, then we 
would also need to address the problem of an interface coming in contact with a solid surface. This would 
require us to include additional physics to specify the conditions under which an interface can touch a 
solid surface. This physics is not included in the current version of our code. 
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position described by analytical expression (II.5), however, is independent of these transients and can be 

used to verify the accuracy of numerical results. 

We first present results that show that the trajectory of a sphere released in the two-fluid interface 

is independent of the mesh resolution and the time step. We have used two regular tetrahedral meshes to 

show that the results converge with mesh refinement. In a tetrahedral element there are seven velocity and 

four pressure nodes. The rigid body constraint inside particles is enforced using uniformly distributed 

collocation points. The number of velocity nodes and elements in the first mesh are 117,649 and 13,824, 

respectively. In the second mesh, referred to as mesh B, there are 274,625 velocity nodes and 32,768 

elements. The time step for these simulations is 0.0001, 0.00005 or 0.000025. 

 
 VI.1a 

 
VI.1b 

 
Figure VI.1. The particle position and the interface shape and the velocity field in the domain midsection are shown. 
The length of velocity vectors is magnified 30 times. The length of the velocity vectors in (b) is smaller indicating 
that the fluid velocity decreases with time. The oblique and side views are shown. (a) t=0.003. The fluid velocity is 
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largest near the contact line where the interface curvature is large, (b) t=0.08. The dimensionless parameters based 
on the maximum particle velocity are (Re=0.064, G=1916.0, Ca=0.02) and based on the capillary velocity are 
(Re=3.2, G=0.766). 
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Figure VI.2. The vertical component of sphere velocity w released from rest on the interface is shown as a function 
of time for three different values of the time step. The curve marked mesh B is for a more refined mesh.  The density 
and viscosity of the lower fluid are 1.0 gm/cm3 and 1.0 Poise, and those of the upper fluid are 0.1 gm/cm3 and 0.1 
Poise. The interfacial tension is 16.0 dynes/cm and the particle density is 1.05 gm/cm3. 
 

The sphere density is 1.05 gm/cm3 and the interfacial tension is 16.0 dynes/cm. For the upper 

fluid density is 0.1 gm/cm3 and the viscosity is 0.1 Poise. The initial velocity distribution in the fluid, and 

the sphere’s linear and angular velocities are assumed to be zero. The domain is assumed to cubical with 

sides 0.4 cm. The sphere center is at a distance of 0.02 cm above the undeformed interface which passes 

though the domain center. 

 In figure VI.2, w is plotted as a function of time for three time steps and two mesh resolutions. 

When the time step is reduced or when the mesh is refined the variation of w with time remains 

approximately the same. This allows us to conclude that the numerical results converge with both mesh 

and time step refinements. 

  Figure VI.2 shows that the vertical component of the sphere velocity w increases for t<~0.005 s 

and then it starts to decrease; it becomes negative for t=~0.019 s and then increases again and becomes 

very small and fluctuates around zero for t>~0.06 s. The other components of velocity u and v remain 

small for all times. We will assume that for t=0.06 s the sphere has reached a state of equilibrium with 

h2=0.156R and cθ =65.26°. The computed values given in table VI.1 are in good agreement with the 

equilibrium formula (II.5). We may therefore conclude that the state of equilibrium is captured correctly 
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by our code. The dimensionless parameters based on the maximum vertical velocity are: Re=0.064, 

Ca=0.02, G=1916.0 and We=1.28x10-3. 

 

Table VI.1. The interfacial deformation h2/R, the floating height R cos cθ   from numerical computation are used to 

compute the sum of the pressure and vertical component of capillary forces from (II.1) and (II.3) for 5 values of the 
interfacial tension. The sphere density is 1.05 gm/cm3 and its weight is 4.315 g cm/s2. The density of lower fluid is 
1.0 gm/cm3 and that of the upper fluid is 0.1 gm/cm3. For all five cases, cp FF +  is approximately equal to the 

particle weight; we get the correct value of the sphere weight from simulations. As expected, the sphere's floating 
height increases and the interface deformation decreases with increasing surface tension. The interfacial 
deformation for these calculations is restricted because the domain size is relatively small. But, we can still compare 
these values as the same domain is used for all interfacial tension values. 
 

γ (dynes/cm) h2/R R cos cθ  (cm) cθ (degrees) cp FF + (g cm/s2) 

10 0.237 0.257 75.00 4.33 
14 0.173 0.376 67.95 4.35 
16 0.156 0.419 65.26 4.35 
20 0.130 0.466 62.28 4.36 
25 0.114 0.514 59.07 4.33 
  

 To understand the initial increase in w, we notice that the angle θc giving the position of the 

contact line in figure VI.1a is larger than that for the equilibrium state shown in figure VI.1b (also see 

figure V.1b). Thus, the vertical component of capillary force is initially larger than the final value and as a 

result the particle moves upwards. This is a consequence of the fact that initially the interface is 

approximately flat everywhere except near the sphere (see figure VI.1a). The large curvature of the 

interface near the sphere at early times is reduced by interfacial tension and the interface assumes its 

equilibrium shape. The contact line moves downwards, reducing the vertical component of the capillary 

force. The vertical component of the pressure force in figures VI.1a and b are different, but since in the 

case shown in figure VI.1a the fluid velocity is not small, the pressure force cannot be determined using 

hydrostatics. 

 



Printed 1/21/2005 12:40:00 PM XVI-71 DDJ/2002/papers/MotionParticles/ChapXVI 

 
Figure VI.3. The sphere position and the corresponding interface shape are shown on the domain midsection. For 
the bottom sphere (shown as a circle) and the interface shape the surface tension is 10 dynes/cm and for the top 
sphere and the interface shape it is 25 dynes/cm. The depth to which a sphere sinks into the lower fluid decreases 
with increasing value of the surface tension.   

 

To validate our code further, we performed calculations for five different values of interfacial 

tension γ while keeping the other parameters fixed. Figure VI.3 shows that, as expected, when γ is smaller 

the particle sinks to a greater depth. In table VI.1 we have listed the floating heights, defined to be the 

vertical distance of the particle center from the contact line, and the sum of the pressure and vertical 

component of capillary forces acting on the particle for these five values of the interfacial tension. For all 

cases in equilibrium, as required, cp FF +  is approximately equal to the particle’s weight. There are small 

differences due to numerical errors.  

 

Table VI.2. The interfacial deformation h2/R, the floating height R cos cθ  and the point of contact cθ  are listed as a 

function of the upper fluid density. The interfacial tension is 16 dynes/cm. The sphere density is 1.05 g/cm3 and its 
weight is 4.315 g cm/s2. The density of lower fluid is 1.0 g/cm3 and that of the upper fluid is varied. The floating 
height increases and the interface deformation decreases with decreasing density of the upper fluid.  
 

 

 

 

 
 

In table VI.2 we have listed the floating heights for two additional cases where the density of the 

upper fluids are 0.01 gm/cm3 and 0.0016 gm/cm3, and the corresponding viscosities are 0.033 Poise and 

ρU (g/cm3) h2/R R cos cθ   cθ (degrees) 
0.1 0.156 0.419 65.26 
0.01 0.159 0.417 65.34 
0.0016 0.161 0.417 65.37 



Printed 1/21/2005 12:40:00 PM XVI-72 DDJ/2002/papers/MotionParticles/ChapXVI 

0.0166 Poise. The interfacial tension is 16.0 dynes/cm. The time step used for these calculations was 

2x10-5s. It is necessary to use a smaller value of the time step for these simulations because the ratio of 

lower and upper fluids densities is larger. The time step used is smaller also when the ratio of the lower 

and upper fluids viscosities is larger. The domain was discretized using mesh B described above. Table 

VI.2 shows that the floating height slightly decreases when the density of the upper fluid is reduced.  

The equilibrium analysis, presented in section II, assumes that the fluid extends to infinity in the 

x-, y- and z-directions which is not the case for our simulations. This may explain some differences 

between our simulations and the analytical results. These differences are expected to decrease with 

increasing box size. We also wish to note that for our simulations the magnitude of fluid velocity 

decreases as the state of equilibrium is approached, but it does not decrease beyond a certain value which 

depends on the fluid viscosity, surface tension and the interface curvature. The flow develops steady 

spurious circulation cells around the interface that are similar to those seen in simulations of drops 

(Scardovelli and Zaleski (1999)). It has been noted by D.D. Joseph that these circulation cells arise in 

simulations because the discretized equation for the vorticity, which can be obtained by taking the curl of 

the momentum equation, contains a non zero contribution from the layer (V.4) representing the delta 

function in the level set method. This creates vorticity along the discretized interface which diffuses into 

the domain. The presence of these cells, however, does not seem to affect the overall force balance, 

discussed in table VI.1, for equilibrium. 

 

VI.1.2. Motion of two spheres 

We next present results for the case where two spherical particles are released near each other on 

the interface at the same vertical height. The initial interface position is assumed to be flat, except near the 

particle surfaces where a contact angle of 135º is prescribed. The initial vertical height of the spheres is 

higher than for a single sphere in equilibrium for the same parameter values. The parameters are assumed 

to be in the range for which a single sphere can be in equilibrium. 

For these calculations, the particle density is 1.05 gm/cm3. The interfacial tension is 16.0 

dynes/cm. The upper fluid density is 0.01 gm/cm3 and viscosity is 0.033 Poise. The initial velocities are 

assumed to be zero. The domain height is 0.4 cm. The domain width in the x-direction is 0.4 cm and in 

the y-direction is 0.8 cm. The undeformed interface passes though the domain center and the particle 

centers are initially at a height of 0.02 cm above the interface. The initial distance between the spheres in 

the y-direction is 2.6 R or 3.2 R. The mesh resolution is comparable to that for the coarse mesh in section 

VI.1.1.  

  We have already noted that when two or more spheres released in the interface are close they 

move towards each other due to the action of the lateral component of the capillary force associated with 
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the asymmetric deformation of the interface around the particles. Figure VI.4a shows that for t=0.0042 

the interface shape is deformed in a small region around the spheres and farther away it is relatively flat; 

hence there is no lowering of interface. Consequently, at this time, the spheres do not experience any 

lateral attractive force. But, as for a single sphere, the interface height around the spheres decreases as 

time increases and, as a result, the contact lines on both spheres move downward. The vertical component 

of capillary force, which is initially larger than the final value, causes the spheres to move upward, but as 

the contact lines move downward the vertical capillary force decreases and the vertical velocities become 

negative. After this initial motion for t<~0.05 s, the vertical velocities become relatively small, but remain 

negative as the spheres approach each other. These initial transients in the velocities of the spheres could 

be diminished by setting their initial positions and interface shape closer to those for the equilibrium of an 

isolated sphere. This would however complicate the problem of prescribing initial conditions and make 

the problem less realistic.   
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(d) 
 
Figure VI.4. The positions of two spheres suspended in the two-fluid interface and the velocity distribution at the 
domain midsection are shown at t=0.0042, 0.175, 0.225 and 0.339. The length of velocity vectors is magnified 50 
times. The length of the velocity vectors is the largest in (a) and the smallest in (d) which indicates that the 
maximum velocity in the domain is decreasing with time. The particles are moving toward each other in the 
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interface. The particles are "supported" by the capillary force associated with the deformation of the interface. The 
surface tension is 16.0 dynes/cm, the particle density is 1.05 g/cm3 and the density of the top fluid is 0.01 g/cm3 and 
that on the bottom is 1.0 g/cm3. The initial distance between the spheres is 3.2 R. (a) Oblique views, (b) Side view of 
the velocity field on the domain midsection. The dimensionless parameters based on the maximum particle velocity 
are (Re=0.028, G=1.0x104, Ca=0.00875) and based on the capillary velocity are (Re=3.2, G=0.766). 
 

  Snapshots at t=0.0042, 0.175, 0.225 and 0.399 of the evolution to equilibrium are shown in figure 

VI.4. At t=0.399 the spheres are close to equilibrium. 

  The magnitude of the lateral capillary force )D(F γ  increases as the distance between the spheres 

decreases, where F is the y-component of capillary force acting on a sphere (see figure VI.5). This is also 

seen as an increase in the approach velocity v2-v1 plotted as a function of time in figure VI.5. However, 

the approach velocity begins to decrease due to the lubrication forces when the gap between the spheres is 

small enough. Simulations also show that when the distance between the spheres is larger, the initial 

approach velocity is smaller, because the lateral component of capillary force is smaller, and the time 

needed for the spheres to come together is larger. This is in agreement with (II.17) which implies that the 

lateral force increases with decreasing distance between the spheres. The dimensionless parameters based 

on the maximum lateral velocity are (Re=0.028, G=1.0x104, Ca=0.00875).  

  The contact line and the interface shape evolve as the spheres move toward each other. Therefore, 

the lateral component of the capillary force and the contribution of the pressure to force change as the 

distance between the spheres decreases. Petkov, et al. 1995 measured the approach velocity of particles 

and found that when the gap between the particles is smaller than O(30R), which is the case for our 

simulations, the non linearity of the interface curvature also influences the approach velocity. For the case 

described in figure VI.4 the simulations were stopped at t=0.339 when the distance between the spheres’ 

surfaces reduced to 0.047 R. The interface shape at this time is shown in figure VI.4d. Notice that the 

interface height between the spheres in this figure is even lower and the interface shape is flatter. For the 

case where the initial distance between the spheres’ surfaces is 0.6 R the time taken to reach the same 

separation is ~0.181. The approach velocity remains relatively small for t<~0.04 during which the initial 

interfacial deformation takes place, which is approximately the time interval in which a single sphere 

reached equilibrium in section VI.1.1.  
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Figure VI.5. The distance between the surfaces of spheres, the approach velocity v2-v1 and the lateral capillary force 
are plotted as functions of time. The approach velocity v2-v1 is shown for three different values of the time step. 
Notice that the approach velocity initially increases as the interface height between the spheres decreases and then 
decreases as the gap between the spheres becomes small. The initial distance between the spheres is 2.6R. 
 
  In figure VI.6 the approach velocity and the dimensionless distance between the spheres are 

shown for five additional parameter values. For these cases, the spheres centers are initially at a height of 

0.04 cm above the interface and the initial distance between the spheres in the y-direction is 3.2 R. These 

figures show that the approach velocity becomes positive after a short time interval and increases as the 

spheres move toward each other. The approach velocity decreases when the gap between the spheres 

becomes small due to the lubrication forces. The lateral velocity for small times is negative because when 

the spheres sink into the lower liquid the hydrodynamic force is repulsive. From these figures we also 

conclude that the approach velocity increases when the viscosity of the upper or lower liquid is decreased. 

It also increases when the particle density or the surface tension coefficient is increased. The lateral 

velocity contains oscillations when the Reynolds number is of order one or larger.  
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(e) 

Figure VI.6. The distance between the spheres and the approach velocity v2-v1 are plotted as functions of time. 
Notice that the approach velocity initially increases as the interface height between the spheres decreases and then 
decreases as the gap between the spheres becomes small. The initial distance between the spheres is 3.2R. (a) The 
parameters are: (lp=1.1, lU=1.0, m=1.0), Lη =0.1 Poise and γ=2.0 dynes/cm. The dimensionless parameters based 

on the maximum particle velocity are (Re=0.38, G=5.4x103, Ca=0.0095) and based on the capillary velocity are 
(Re=40.0, G=0.491). (b) The parameters are: (lp=1.1, lU=1.0, m=1.0), Lη =0.01 Poise and γ=2.0 dynes/cm. The 

dimensionless parameters based on the maximum particle velocity are (Re=10.2, G=784.8, Ca=0.0025) and based 
on the capillary velocity are (Re=4000, G=4.9x10-3). (c) The parameters are: (lp=1.01, lU=10.0, m=10.0), Lη =0.1 
Poise and γ=16.0 dynes/cm. The dimensionless parameters based on the maximum particle velocity are (Re=5.12, 
G=29.9, Ca=0.016) and based on the capillary velocity are (Re=320, G=7.66x10-3). (d) The parameters are: 
(lp=1.005, lU=2.0, m=2.0), Lη =0.1 Poise and γ=4.0 dynes/cm. The dimensionless parameters based on the 

maximum particle velocity are (Re=1.38, G=412.1, Ca=0.017) and based on the capillary velocity are (Re=80, 
G=0.12). (e) The parameters are: (lp=1.005, lU=2.0, m=1.0), Lη =0.1 Poise and γ=4.0 dynes/cm. The 

dimensionless parameters based on the maximum particle velocity are (Re=1.26, G=496.3, Ca=0.016) and based 
on the capillary velocity are (Re=80, G=0.12). 
 
    
  Another interesting consequence of the lowering of interface height and contact lines between the 

spheres is a decrease in the vertical component of capillary force. This component of the capillary force 

acts against gravity and keeps them floating even though they are heavier than both liquids. This decrease 

causes the floating height of the spheres to decrease slightly (see table VI.3). For example, the height for a 

single sphere in section VI.1.1 for the same parameters was 0.419, but for the two spheres in figure VI.4d 

it is 0.375, where they are almost touching. This decrease in the floating height raises the contact line 

position everywhere except between the spheres so that the vertical component of the capillary force 

returns to the value required for balancing their buoyant weights (see figure VI.7). When the parameters 

are such that the sum of the vertical component of the capillary and pressure forces is near its maximum 

value for an isolated sphere, a decrease in the floating height would actually decrease the vertical 

component of total force. Therefore, if the spheres are barely floating, a decrease in the floating height 

will cause them to sink. This suggests that the clusters of spheres are more likely to sink than an isolated 

sphere.  
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Figure VI.7. The figure shows the contact line and the interface shape near a floating sphere. The contact line 
position on the left is lower, i.e., θc2<θc1, as there is another sphere floating to the left (not shown).  Figure II.8 
shows that the vertical capillary force increases with increasing cθ  only when cθ  is less than 109º (which depends 

on the contact angle).  Thus, the vertical capillary force acting on the right side of the sphere is larger than on the 
left side. But, if 1cθ is greater than 109º, this may not be the case.  
 

Table VI.3. The floating height R cos cθ , the point of contact cθ  and the interfacial deformation h2/R are shown as 
a function of the distance d between the spheres. The interfacial tension is 16.0 dynes/cm. The sphere density is 1.05 
gm/cm3. The density of the lower fluid is 1.0 gm/cm3 and that of the upper fluid is 0.1 gm/cm3. The floating height is 
computed based on the contact line position on the sphere surface away from the gap. Notice that the floating height 
of the spheres decreases and the interfacial deformation increases as they come closer. These values should 
approach the values for an isolated particle when the distance d is large. 
 

d (cm) R cos cθ  (cm) cθ (degrees) h2/R 
0.279 0.397 66.60 0.234 
0.2493 0.388 67.13 0.289 
0.2118 0.375 67.99 0.302 
 

  

VI.1.3. Motion of four spheres 

For these calculations the sphere density is 1.05 gm/cm3 and the interfacial tension is 16.0 

dynes/cm. The upper fluid density is 0.1 gm/cm3 and the viscosity is 0.1 Poise. The motion starts from 

rest. The domain height is 0.4 cm. The width along x-direction is 0.8 cm and along y-direction is 0.8 cm. 

The undeformed interface passes though the domain center. The initial positions of the four spheres are 

(0.4,0.22,0.22), (0.4,0.58,0.22), (0.23,0.4,0.22) and (0.57,0.4,0.22). The mesh resolution is the same as for 

the coarse mesh in section VI.1.1.  
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h2 

R 
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Figure VI.8.  Oblique views showing the positions of four rigid spheres suspended in the two-fluid interface at 
t=0.002 and 0.096. After they are released, they move toward each other. The surface tension is 16.0 dynes/cm, the 
particle density is 1.05 g/cm3 and the density of the top fluid is 0.1 g/cm3 and that on the bottom is 1.0 g/cm3. The 
dimensionless parameters based on the maximum particle velocity are (Re=0.032, G=7664.1, Ca=0.01) and based 
on the capillary velocity are (Re=3.2, G=0.766). 

 

  After initial transients have died out, the spheres move toward each other. Their vertical velocity 

becomes small at t=~0.05 and around this time the interface height between the spheres begins to 

decrease.   

  In figures VI.8a and b the spheres and interface shape are shown at t=0.002 and 0.096, 

respectively. In the first figure, the interface shape between spheres is not significantly deformed and the 

lateral velocities are small and in the second figure the interface between the spheres is lowered. The 

interface shape and the contact lines for the spheres are no longer symmetric and thus the lateral 

component of capillary force acting on the spheres is not zero which causes them to move laterally 

towards each other.  
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  As spheres approach each other, the vertical component of capillary force decreases due to the 

lowering of interface height between the spheres and thus the floating heights of the spheres decrease 

slightly (see figure VI.8b). For example, the height for a single sphere in section 3.1 for the same 

parameters is 0.419, for the two sphere case it is 0.375, and for the four spheres in figure VI.8b, where 

they are almost touching, it is 0.355.   

 

VI.2 Initial value problems for floating disks 

The disks in our simulations are released with the top plane of the disk in the plane of the 

undeformed interface. The disk velocity, its position and the interfacial deformation change with time. 

The final state, described by expression (II.8), is independent of these transients and can be used to verify 

the accuracy of numerical results. In equilibrium, the interface shape is such that the capillary force is 

exactly balanced by a jump in the pressure across the interface and therefore no fluid flow is induced. The 

fluid velocity in simulations is small but nonzero.   

 

VI.2.1. Motion of a single disk 

We first discuss results that show that the trajectory of a disk released in the two-fluid interface is 

independent of the mesh resolution and the time step. We have used two regular tetrahedral meshes to 

show that the results converge with mesh refinement. The rigid body constraint inside particles is 

enforced using uniformly distributed collocation points. The number of velocity nodes and elements in 

the first mesh are 117,649 and 13,824, respectively. In the second mesh, referred to as mesh B, there are 

274,625 velocity nodes and 32,768 elements. The time step for these simulations is 0.0001 s or 0.00005 s. 

The disk radius is 0.1 cm and its density is 1.5 gm/cm3. The interfacial tension is 5.0 dynes/cm. 

The density of the upper fluid is 0.1 gm/cm3 and its viscosity is 0.1 Poise. Initially, all velocities are zero. 

The domain is cubical with sides 0.4 cm. The top surface of the disk is in the plane of the undeformed 

interface which is at z=0.28 cm. The parameters are in the range for which a disk trapped in the interface 

can be in equilibrium. 
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Figure VI.9. The vertical component of velocity w for a disk released in the interface is shown as a function of time 
for two different values of the time step. The curve marked mesh B is for a more refined mesh.  The density and 
viscosity of the lower fluid are 1.0 gm/cm3 and 1.0 Poise and those of the upper fluid are 0.1 gm/cm3 and 0.1 Poise. 
The interfacial tension is 5.0 dynes/cm and the particle density is 1.5 gm/cm3. The dimensionless parameters based 
on the maximum vertical velocity of the disk are (Re=0.35, G=100.2, Ca=0.014) and based on the capillary velocity 
are (Re=50, G=0.039). 

 

Figure VI.9 shows that the numerical results for w vs. t converge with both mesh and time step 

refinements. Figures VI.9 also shows that the vertical component w of the velocity of the disk decreases 

for t<~0.02 s. It begins to increase slowly at t=~0.02 s and fluctuates around zero for t>~0.12 s (see figure 

VI.10). The other components of velocity u and v are negligible for all times. We will assume that for 

t=0.12 s the particle has reached a state of equilibrium with h2=0.28R and ψ=45.8º. Table VI.4 shows that 

these values are in good agreement with the equilibrium requirement (II.8). We may therefore conclude 

that the state of equilibrium is captured correctly by our code.  

VI.10a 
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      VI.10b 
 
Figure VI.10. The disk position, the interface shape and the velocity field in the domain midsection are shown. The 
length of velocity vectors is magnified 30 times. The oblique and side views are shown. (a) t=0.0125 s, (b) t=0.15 s. 
The dimensionless parameters based on the maximum vertical velocity of the disk are (Re=0.35, G=100.2, 
Ca=0.014) and based on the capillary velocity are (Re=50, G=0.039). 
 

 The vertical velocity w decreases initially with time because the disk is denser than the liquid 

below and the vertical component of the capillary force is zero, as the interface is not deformed. The 

buoyant weight and the contact angle increase simultaneously as the disk sinks. 
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Figure VI.11. The oblique and front views of the floating disks and the interface shape are shown. The depth to 
which a disk sinks into the lower fluid increases with increasing disk density. (a) ρp=1.1, (b) ρp=1, and (c) ρp=1.5.   
 

We performed calculations for two additional values of the disk density ρp while keeping the 

other parameters fixed. Figure VI.11 shows that heavier disks sink to a greater depth and the contact angle 

is larger. In table VI.4 we give the computed values of h2/R and the forces cp FF +  for the three values of 

ρp. For all cases, the computed values of the force are approximately equal to the weight of the disk. 

Some small differences are due to numerical errors. The equilibrium analysis of section II assumes that 

the fluid extends to infinity in the x-, y- and z-directions which is not the case for our simulations. This 

may explain small differences between our simulations and the analytical results.   

 

Table VI.4. The interfacial deformation h2/R and the sum of the pressure and vertical component of capillary forces 
obtained using (II.6) and (II.7) are shown as a function of the disk density. The interfacial tension is 5.0 dynes/cm. 
The density of lower fluid is 1.0 gm/cm3 and that of the upper fluid is 0.1 gm/cm3. For all three cases, cp FF +  is 
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approximately equal to the disk weight. Also notice that, as expected, the interface deformation increases with 
increasing particle density.  
 

ρ ( gm/cm3) weight (g cm/s2) h2/R cp FF + (g cm/s2) 

1.1 6.78 0.15 6.86 
1.2 7.40 0.21 7.38 
1.5 9.24 0.28 9.26 
 

VI.2.2 Motion of two disks 

We next present results for the case where two disks are released near each other in the interface 

at the same vertical height. The domain height is 0.4 cm. The domain width along the x-direction is 0.8 

cm and along the y-direction is 0.4 cm. The disk diameter is 0.1 cm and the height is 0.1 cm. The 

undeformed interface is at a distance of 0.23 cm from the bottom. The initial velocities are assumed to be 

zero. The mesh resolution is comparable to that for the coarse mesh in subsection VI.2.1.  

We first describe the case for which the particle density is 1.1 gm/cm3, the interfacial tension is 

3.0 dynes/cm, and the upper fluid density and viscosity are 0.1 gm/cm3 and 1.0 Poise, respectively. The 

viscosity of the lower fluid is 10.0 Poise. The two disks are placed at (0.32, 0.2, 0.18) and (0.48, 0.2, 

0.18). The initial distance between the disks in the x-direction is 3.2R. Figure VI.12a shows that at t=0.04 

the interface is deformed only in a small region around the disks and the disks do not experience a lateral 

attractive force. When the disks sink the contact angles increase. After this initial motion for t<~0.12 s, 

the disks sink slowly, as they move toward each other.  
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Figure VI.12. The positions of two disks suspended on the two-fluid interface and the velocity distribution at the 
domain midsection are shown at t=0.04, 0.2, 0.5 and 0.8 s. The length of velocity vectors is magnified 50 times.  The 
disks move toward each other in the interface. The surface tension is 3.0 dynes/cm, the particle density is 1.1 g/cm3 
and the density of the top fluid is 0.1 g/cm3 and that of the bottom fluid is 1.0 g/cm3. The initial distance between the 
disks is 3.2 R. The dimensionless parameters based on the maximum velocity of the disk are (Re=0.0023, G=242.0, 
Ca=1.5) and based on the capillary velocity are (Re=1.5x10-3, G=545.0). 

 

  In figure VI.12b the disks and the interface shape are shown at t=0.2 s. The interface height 

between the disks in figure VI.12c at t=0.5 s is significantly lower than on the sides. Since the contact 

angle between the disks is smaller, the lateral capillary force is larger.    

  Figure VI.13a shows that the approach velocity u2-u1 first increases and then decreases with time. 

The approach velocity increases with time because the lateral component of the capillary force increases 

as the distance between the disks decreases. This also causes the disks to slightly tilt in the xz-plane. For 

all cases simulated in this paper it is smaller than 0.5º. The time taken by the disks to come together 

increases with the initial distance not only because the distance is larger, but also because the approach 

velocity decreases with increasing distance. Figure VI.13a also shows that the approach velocity starts to 

decrease when the gap between disks becomes small compared to the disk radius due to the activation of 

lubrication forces.  
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VI.13. (b) 
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VI.13. (c) 
 
Figure VI.13. The approach velocity u2-u1 and the dimensionless distance d/R between the disks are plotted as 
functions of time. The approach velocity initially increases as the interface height between the disks decreases and 
then decreases as the gap between the particles becomes small. (a) The initial distance between the disks is 2.8R and 
the dimensionless parameters based on the maximum disk velocity are (Re=0.11, G=2224.5, Ca=0.0021), (b) The 
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initial d/R=3.2 and the dimensionless parameters are (Re=0.0023, G=242.0, Ca=1.5) (c) The initial d/R= 5.2 and 
the dimensionless parameters are (Re=0.11, G=2224.5, Ca=0.0021).  
 
 

In figure VI.13 we have plotted the separation distance d/R ≥ 2 and the approach velocity u2-u1 as 

function of time for three initial values of d/R = (2.8, 3.2, 5.2) at t=0. In all cases the approach velocity 

has a maximum value at a certain time and then decreases. The slow down is due to activation of 

lubrication force at close approach. The approach velocity in the case of the smallest initial distance 

d/R=2.8 shown in figure VI.13a is negative for a short period and the particles first disperse and then 

attract. 

The same type of plots are presented for the case in which the viscosity of the lower fluid is 

reduced tenfold, from 0.1 to 0.01 Poise and d/R=6, larger even than d/R=5.2 in figure VI.13c. The 

magnitudes of the velocities which develop are larger in the small viscosity fluid even though the initial 

separation is larger. The approach velocity is not monotonic due to changes in the interface shape away 

from the disk. 

The tendency toward initial repulsion followed by attraction seen in figure IV.1a when the initial 

separation d/R=6 is small has been observed in experiments. Joseph et al. 2003, say (page 143) 

“We create such dispersions by pouring particles on the liquid, nothing complicated, just like a salt shaker. 
As soon as the particles hit the liquid surface they disperse radially leading to dispersions like that 3 minutes in 
figure 4. The dispersion, followed by attraction, is more or less universal and we have not seen it mentioned in the 
literature.”  

We expect the limiting value d/R=2 to be achieved asymptotically as t ∞→ ; this asymptotic 

result cannot be achieved with the present numerical package which uses a security zone to prevent 

collisions of particles. In the future we will implement the new scheme of Singh, Hesla and Joseph 2003 

which does allow collision and close packing in equilibrium. 

Since the computation domain size for our simulations is only 8 R, the interface evolution near 

the particles is also influenced by the conditions imposed at the domain boundary. On the domain walls, 

the contact line does not remain flat; its level is lower in the middle of the domain walls and higher in the 

domain corners. This causes the particles approach velocity to vary, as the lowering on contact lines on 

the domain walls influences the magnitude of the lateral attractive force, especially when the gap between 

the disk and a domain wall is comparable to the distance between the disks. This effect, which is due to a 

finite size of the computational domain, can be diminished by performing simulations in larger domains. 
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Figure VI.14. The approach velocity u2-u1 and the dimensionless distance d/R between the disks are plotted as 
functions of time. The approach velocity initially increases as the interface height between the disks decreases and 
then decreases as the gap between the particles becomes small. The lower fluid viscosity is 0.01 Poise and the initial 
d/R= 6. The dimensionless parameters based on the maximum disk velocity are (Re=2.4, G=425.8 Ca=0.0024). 
 

  An interesting consequence of the lowering of the interface height between the disks is that the 

average value of the contact angle around the disk decreases. This decrease reduces the vertical 

component of capillary force which acts against gravity and keeps the disks floating. A reduction in the 

vertical capillary force causes the disks to sink slightly increasing the contact angle everywhere except 

between the disks. After this additional sinking, the buoyant weight again becomes equal to the vertical 

component of the capillary force. This additional sinking, which also happens when two floating spheres 

come near each other, suggests that the clusters of disks are more likely to sink than an isolated disk.  

 

VI.2.2.1 Role of the particle density 

  In table VI.5 we have given results for the approach velocity for different values of the particle 

density. A denser disk sinks more causing a greater interfacial deformation. The lateral force which arises 

from the asymmetry is then greater and the velocity with which the disks approach each other is larger.  

 

Table VI.5. The maximum approach velocity for the disks is listed to show the dependence on their density. The 
lower fluid viscosity is 0.1 Poise and the density is 1.0 gm/cm3. The initial distance between the disks is 2.8 R. 
 

ρp ρ (upper fluid) η  (upper fluid) γ (u2-u1)max 

1.1 1 0.1 10 0.0036 

1.5 1 0.1 10 0.0762 

1.5 0.1 0.01 10 0.034 

2.0 0.1 0.01 10 0.066 
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VI.2.2.2 Role of the fluid density ratio 

  In this subsection we show how u2-u1 depends on lU
L

U
ρ
ρ

= . The case of matched densities 

LU ρ=ρ  is interesting because the lowering of the interface does not cause an increase in Fp. This case is 

also interesting because after the motion stops an equilibrium is reached in which the variation of pressure 

does not depend on the interface shape. This implies that the interface must deform so that there is no 

pressure jump across it; hence the mean curvature of the deformed interface is zero.   

  When the density ratio lU is decreased the disks sink to a lower depth and their lateral approach 

velocities are smaller. The maximum approach velocities for two cases are listed in table VI.6.   

 

Table VI.6. The maximum approach velocities for the disks are listed to show dependence on the upper fluid density. 
The lower fluid viscosity is 0.1Poise and the particle density is 1.5 gm/cm3. The initial distance between the disks is 
2.8 R. 
ρlower ρ (upper fluid) η  (upper fluid) γ (u2-u1)max 

1.0 1 0.1 10 0.0762 

1.0 0.1 0.1 10 0.039 

 

VI.2.2.3 Role of the viscosity ratio 

  We know from analysis of section II that the viscosity does not play a role in determining the 

equilibrium state of floating particles, but it does alter the velocity. The lateral velocity of the disk 

decreases with increasing viscosity, but is not so strongly dependent on the viscosity ratio m=
L

U
η
η .  

2
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3
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4
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5
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t

d/R

viscosity= 0.001
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Figure VI.14. The dimensionless gap between the disks is plotted for two different values of the upper fluid viscosity. 
As the disks are almost completely immersed, the effect of the upper fluid viscosity on the lateral disk velocity is 
negligible. 
 

  In figure VI.14 we have shown results for two different values of 
L

U
η
η . All other parameters are 

kept fixed. The approach velocity increases, but only slightly as the viscosity ratio is decreased. These 

velocities at a fixed distance of 2.7 R for the disks released at the initial distance of 2.8 R. are listed in 

table VI.7.  The velocity increase is due to a decrease in the viscous resistance of the upper fluid. The 

increase in the velocity is greater for the heavier particles and also for larger values of lU; in these cases 

the interfacial deformation is greater.  

  

Table VI.7. The maximum approach velocities for the disks are listed to show the dependence on the upper fluid 
viscosity. The lower fluid viscosity is 0.1 Poise and the particle density is 2.0 gm/cm3. The initial distance between 
the disks is 2.8 R. 
ρlower ρ (upper fluid) η  (upper fluid) γ (u2-u1)max 

1.0 0.01 0.01 10 0.291 

1.0 0.01 0.005 10 0.297 

 

VII. Conclusions 

This is the first paper on the direct numerical simulation of the motion of solid floating particles. 

A floating smooth particle, embedded in the interface between two fluids, touches the interface at a fixed 

contact angle, which at equilibrium is given by the Young-Dupré law. For a floating prismatic particle, on 

the other hand, the contact line is assumed to be fixed at its sharp edge, provided the contact angle at the 

edge is within the limits specified by the Gibbs extension to the Young-Dupré law.  For example, in our 

simulations of disks, floating with their axis normal to the interface, the contact line is assumed to be 

pinned at the top sharp edge of the disk. 

The constraint that the contact line remains pinned at a sharp edge of a prismatic particle is 

different from that for a smooth particle, such as a sphere. For a smooth particle, the contact line can 

move, but the contact angle is fixed and here is assumed to be that at equilibrium given by the Young-

Dupré law. The problem of the motion of the contact line is difficult and unsolved. The problem is that 

the no slip condition implies that the contact point cannot move which contradicts the behavior seen in 

experiments (see Dussan and Davis 1974, Dussan 1976 and Kistler and Scriven 1993 and references 

therein). Several approaches to this problem have been proposed and could be implemented in direct 

numerical simulations (see Sussman 2001, Friedrichs and Guceri 1993, Kamal, Goyal and Chu 1988, and 
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references therein). Here we look at one approach which could be called capillary induced motion of the 

contact line due to a prescribed contact angle. In this approach, we let the contact line adjust to the 

dynamics under the constraint that the contact angle is fixed. The no slip condition is satisfied before and 

after the contact line moves. In another approach, not implemented here, the contact line is allowed to slip 

by relaxing the no slip condition by putting the velocity of the contact line proportional to the shear stress 

there. This approach requires us to relax the prescribed contact angle condition. Another feature, not 

treated here, which impacts the floating particle problem is the existence of advancing and receding 

contact angle. The subject is very rich with many possibilities that might be studied in direct simulations. 

The Marchuk-Yenenko operator-splitting technique is used to decouple the four primary 

numerical difficulties of the governing equations: incompressibility constraint, nonlinear convection term, 

Lagrange multiplier problem that forces rigid body motion within the particles, and the interface 

advection problem. The resulting four sub-problems are solved efficiently using matrix free approaches. 

Specifically, the DLM approach is used for enforcing rigid body motion inside the particles, the level set 

approach for tracking the interface and the conjugate gradient algorithms are used to enforce the 

incompressibility constraint and to solve the nonlinear convection problem. The contact line is kept at a 

sharp edge by making the level set function zero along the edge. On smooth surfaces the contact angle is 

kept fixed by using the technique described above. The code is validated by simulating the time 

dependent motion of a particle released on a two-fluid interface to steady state.  

Our simulations show that the interface shape near a sphere adjusts quickly after it is released to 

meet the contact angle requirement, but away from the sphere the interface shape takes a much longer 

time interval to adjust during which the vertical position of particle changes. The computed results are 

shown to be independent of the mesh resolution as well as the size of time step. The steady state limits of 

our dynamic simulations agree with the equilibrium results. The time dependent simulations of two or 

more floating particles lead to capillary attraction and the formation of clusters. The attractive capillary 

force arises due to the asymmetric interface deformation around the particles. Specifically, the interface 

height between the particles is lowered giving rise to a lateral attractive force due to capillarity. This 

lowering of the interface also decreases the net vertical component of the capillary force which causes the 

floating height of the particles to decrease. These results agree qualitatively with the experimental data as 

well as the equilibrium analysis.  

For floating disks, simulations are started by assuming that the interface is flat and that the top 

surface of the disk is in the plane of the interface ensuring that the contact line is initially pinned at the 

sharp rim. The disk assumed to be denser than the liquid sinks into the lower liquid. As it sinks, the 

contact angle increases which in turn increases the vertical component of the capillary force. The disk 

stops sinking when its buoyant weight is balanced by the capillary force. The code is validated by 
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simulating the time dependent motion of a disk released on a two-fluid interface to steady state. 

Simulations show that as the disk sinks, the interface near the disk moves downward, as the contact line is 

pinned to the edge, but away from the disk the interface shape takes a longer time interval to adjust during 

which the vertical position of the disk changes. The computed results are independent of the mesh 

resolution as well as the size of the time step. The steady state limits of our dynamic simulations agree 

with the equilibrium results. 

  Simulations also show that the lowering of the interface between disks pinned to the interface at 

the rim reduces the contact angle between the disks giving rise to the unbalanced attractive capillary 

force. Two floating spheres also attract, but the mechanism by which the attractive force arises is 

different. Specifically, the lateral force on two floating spheres arises due to the lowering of the contact 

line on the surfaces between the two spheres which is a consequence of the constraint that the contact 

angle is fixed. For floating disks, on the other hand, the contact line is fixed and the lateral force arises 

due to a decrease in the contact angle between the disks due to the lowering of the interface. The lowering 

of the interface also decreases the net vertical component of the capillary force which causes the floating 

height of the particles to decrease.  

  Though our floating particle code has been optimized in various ways it still runs slowly. 

Improvements can be made by parallelizing the code for machines with large clusters. The security zone 

which has been used in previous direct numerical simulation based studies, and this one, does not allow 

contact between particles and hence is not faithful to the crystal structures which can evolve in problems 

of self assembly due to capillary attraction. Fortunately, the new collision scheme put forward by Singh, 

Hesla and Joseph 2003 does allow particle-particle contact and close packing. We will implement this 

new strategy in our future work. 
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Appendix. Weak form of equations and finite-element discretization 

The approach used for obtaining the weak form of the governing equations was described in Glowinski, et 
al. 1999 and Singh, et al. 2000. In obtaining this weak form, the hydrodynamic forces and torques acting on the 

particles can be completely eliminated by combining the fluid and particle equations of motion into a single weak 
equation of motion for the combined fluid-particle system. The hydrodynamic stresses acting at the interface are also 
completely eliminated. For simplicity, in this section we will assume that there is only one particle. The extension to 

the many-particle case is straightforward.  
 The solution and variation are required to satisfy the strong form of the constraint of rigid body 

motion throughout P(t). In the distributed Lagrange multiplier method this constraint is removed from the 

velocity space and enforced weakly as a side constraint using a distributed Lagrange multiplier term. It 

was shown in Glowinski, et al. 1999 that the following weak formulation of the problem holds in the 

extended domain: 

 

For a.e. t>0, find u ∈ ΓuW , p ∈ )(L2
0 Ω , λ ∈ )t(Λ , U ∈ R3, ω ∈ R3 and φ ∈ φW , satisfying  

)t(P
'

d
)(,d)(.

dt
dI

dt
dM1

d][:][2d.pd
dt
d

rξVvλxvnVFξωVgU

xvDuDxvxvgu

×+−=∫ ⋅φγκδ−−⎟⎟
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⎝
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+⋅⎟
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⎝
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∫ η+∫ ∇−⋅∫ ⎟
⎠
⎞

⎜
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Ω

ΩΩΩ

 

for all v ∈ 0W , V ∈ R3, and ξ ∈ R3,   (1) 

0d.q =∫ ∇Ω xu   for all q ∈ )(L2 Ω ,     (2) 

)t(P)(, rUuµ ×ω+− = 0 for all µ ∈ )t(Λ ,     (3) 

o0t| uu ==    in Ω,       (4) 

0dg
t

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φ∇+

∂

φ∂
∫Ω

x.u  for all g ∈ Wφ0,      (5)  

00t| φ=φ =    in Ω. 

as well as the kinematic equations and the initial conditions for the particle linear and angular velocities. 

Here F’ is the additional body force applied to the particles to limit the extent of overlap (see equation 

(19) in Glowinski, et al. 1999, λ is the distributed Lagrange multiplier, 

 },on)t(|)(H{W 31
u Γ=Ω∈= ΓΓ uvv  

 ,)(HW 31
00 Ω=  

 }0dq|)(Lq{)(L 22
0 ∫Ω

=Ω∈=Ω x ,   

},on)t(|)(H{W 0
1 −

φ Γφ=φΩ∈φ=  
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},on0|)(H{W 1
0

−
φ Γ=φΩ∈φ=  

}0dq|)(Lq{)(L 22
0 ∫Ω =Ω∈=Ω x ,       (6) 

where −Γ  is the upstream part of Γ  and )t(Λ  is 32 ))t(P(L , with )t(P.,.  denoting the L2 inner product 

over the particle. In our simulations, since the velocity and µ are in L2, we will use the following inner 

product  

 ( ) xvµvµ d., )t(P)t(P ∫= .        (7) 

 In order to solve the above problem numerically, we will discretize the domain using a regular 

tetrahedral mesh Th for the velocity, where h is the mesh size, and a regular tetrahedral mesh T2h for the 

pressure. The following finite dimensional spaces are defined for approximating ΓuW , 0W , )(L2 Ω , 

)(L2
0 Ω , φW  and 0Wφ : 

 }on,TTallforPPP||)(C{W h,hh111Th
30

hh,u Γ=∈××∈Ω∈= ΓΓ uvvv , 

}on0,TTallforPPP||)(C{W hh111Th
30

hh,0 Γ=∈××∈Ω∈= vvv  ,   

}TTallforP|q|)(Cq{L h21Th
0

h
2
h ∈∈Ω∈= , 

}0dq|Lq{L h
2
hh

2
h,0 ∫Ω =∈= x ,         

}ong,TTallforP|g|)(Hg{W n
hh1Th

1
h

n
h,

−Γφ=∈∈Ω∈=
φ

 

}on0g,TTallforP|g|)(Hg{W hh1Th
1

hh,0
−

φ Γ=∈∈Ω∈=  

interface}theon0g,TTallforP|g|)(Hg{W hh1Th
1

hh,R =∈∈Ω∈=φ . (8) 

The particle inner product terms in (1) and (3) are obtained using the discrete L2 inner product defined in 

Glowinski, et al. (1999). Specifically, we choose M points, x1,…,xM that uniformly cover )t(P , and 

define 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈−δ== ∑
=

M

1i

3
M,h1,hii,hhh ,...,),()t( RµµxxµµµΛ  . 

Using these finite dimensional spaces, it is straightforward to discretize equations (1) - (5). Notice that the 

discrete space h,Wφ  assumes that φ is known on the upstream portion of the boundary. This is not a 

problem even when φ(t) is not known on the upstream boundary in advance because the imposed 

boundary value can be corrected during the reinitialization step. Since only the zero level set of φ(t) is 

physically relevant, we have a lot of freedom in treating φ(t) away from the interface. In our code, the 
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value from the previous time step is used as the boundary value. The reinitialization space h,RWφ  

assumes that φ remains zero along the interface which is done by imposing Dirichlet boundary condition, 

φ = 0, along the interface during reinitialization iterations. 

 

A.1 Strong form 
 The strong form for the weak formulation can be obtained by integrating the stress term by parts. The 

resulting equations inside the region occupied by the fluid Ω\ )t(P are 

ρ  ⎥⎦
⎤

⎢⎣
⎡ ∇

∂
∂ uuu   . + 

t
  = ρg - ∇p + ∇.σ +γ κ δ(φ) n in Ω\ P(t)     

∇. u = 0  in Ω\ P(t)    

u = uL on  Γd     

u = U + ω x r on )t(P∂        
and the equations inside the region occupied by the particles P(t) are 

ρ  ⎥⎦
⎤

⎢⎣
⎡ ∇

∂
∂ uuu   . + 

t
  = ρg - ∇p + ∇.(2ηD) + λλ 22R ∇−     (9)  

    

u = Ui + ωi x ri on )t(Pi∂ , i=1,…,N,   

Here we have used the fact that the rigid body motion satisfies the incompressibility constraint and that D(u) 

inside the particles is zero. The boundary condition for λ on the interface between the fluid and particle regions 

∂ P(t) is 

 λnn ∇=σ− .).( L         (10)  

    

where n is the normal at the fluid-particle interface, and =σL -pI  + 2ηD is the stress in the fluid phase, and 

Pσ = 0 is the stress inside the particles. For given U(t) and ω(t), and the positions Xi(t), i=1,…, N, equation (9) 

can be written as: 

λλ 22R ∇−  = ⎟
⎠
⎞

⎜
⎝
⎛ −×ω×ω+×

ω
+ρ grrU )(

dt
d

dt
d

L      (11) 

It is shown in Joseph 2002, chapter IV, that it is possible to completely eliminate the Lagrange multiplier 

λ from the strong form. 

A.2 Time discretization using the Marchuk-Yanenko operator splitting scheme 

The discretized initial value problem (1-5) is solved by using the Marchuk-Yanenko operator splitting 
scheme. This allows us to decouple its four primary difficulties: 

1. The incompressibility condition and the related unknown pressure ph, 
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2. The nonlinear convection term, 

3. The rigid body motion problem inside the particles, 

4. The interface problem and the related unknown level set distribution φh, 

The Marchuk-Yanenko operator splitting scheme can be applied to an initial value problem of the 

form 

f)(A)(A)(A)(A
dt
d

4321 =φ+φ+φ+φ+
φ  

where the operators A1, A2, A3, and A4 can be multiple-valued.  

Let ∆t be the time step, and α1 and α2 be two constants: 0≤α1, α2 ≤1 and α1 + α2  = 1. We use the 

following version of the Marchuk-Yanenko operator splitting to simulate the motion of particles on two-

fluid interfaces:  

Set u0 = u0,h,  and h,0
0 φ=φ . 

For n = 0,1,2,… assuming un, and φn are known, find the values for n+1 using the following: 

STEP 1: 

Find un+1/4 ∈ h,uW  and pn+1/4  ∈ 2
h,0L , by solving 

∫ ⋅φγκδ=∫ ∇−∫
∆

−
ρ ΩΩΩ

+
+

xvnxvxvuu d)(d.pd.
t

4/1n
n4/1n

 

for all v ∈ h,0W ,  

0d.q 4/1n =∇∫Ω
+ xu    for all q ∈ 2

hL ,     (12) 

 

STEP 2: 

Find un+2/4 ∈ h,uW , by solving 

0d][:][2d.).(d.
t

4/2n
1

4/2n4/2n
4/1n4/2n

=∫ ηα+∫ ∇ρ+∫
∆
−

ρ +
ΩΩ

++
Ω

++

xvDuDxvuuxvuu  

for all v ∈ h,0W ,    (13) 

 

STEP 3: 

Compute Un+3/4 and Xn+3/4 using the prediction procedure 
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 Set Un,0= Un, Xn,0 = Xn. 

 Do k=1,K 
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 end do 

 Set Un+3/4= Un,K, Xn+3/4 = Xn,K.        (14) 

 

Find un+1 ∈ 1n
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where the center of particle )t)4/3n((P ∆+  is at 4/3nX + . For a disk the moment of inertia changes as the disk 

rotates and so we also keep track of its orientation. 

Set Xn+1,0 = Xn. 
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 end do 

 Set Xn+1 = Xn+1,K.     
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STEP 4: 

Find φn+4/4 ∈ n
h,Wφ , by solving 
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    for all gh ∈ Wφ0,h.     (16) 

Set pn+1= pn+1/4, φn+1 = φn+4/4. 

 

STEP 4.1: 

Reinitialize φ n+1  

Set 0
Rφ =φn+1  

For r = 0, 1, 2, … 

r
R

r
R1nr )(S

φ∇

φ∇
φ= +w  

Find 1r
R
+φ  ∈ h,RWφ , by solving 

∫ φ=∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
φ∇+

φ−φ +
+

Ω
Ω ∆

xx dg)(Sdg
t h

1n
h

r
R

r
r
R

1r
R .w   

    for all gh ∈ WφR,h.     (17) 

go back to the above for loop. 

 

STEP 4.2: 

Modify φn+1 inside and on the particle surfaces to enforce contact angle 

Set 0
Rφ =φn+1 

For r = 0, 1, 2, … 

⎩
⎨
⎧

=
otherwise)12(from

particlesoutside0

ex

r
ex u

u  

Find 1r
R
+φ  ∈ h,RWφ , by solving 
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0dg
t h

r
R

r
r
R

1r
R =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
φ∇+

∆
φ−φ

∫Ω
+

x.exu   

    for all gh ∈ WφR,h.     (18) 

go back to the above for loop. 

Set φn+1 = 1r
R
+φ  and go back to the first step. 

 

The decoupled sub-problems can be solved much more efficiently than the original problem (1-5). In our 

code all of these sub-problems are solved using matrix-free algorithms, which reduces the memory 

required. 

Remarks: 

1. The first step gives rise to a L2 projection problem for the velocity and pressure distributions which is 

solved by using a conjugate gradient method (Glowinski, Tallec, Ravachol and Tsikkinis 1992 and 

Glowinski, et al. 1999). 

2. The second step is a nonlinear problem for the velocity, which is solved by using a least square 

conjugate gradient algorithm (Glowinski and Pironneau 1992). 

3. In this paper, we will assume that α1 =1, α2 = 0. 

4. The fourth step is a hyperbolic problem for the scalar level set function φ. This problem is solved by 

using a upwinding scheme where the advection term is discretized using a third order scheme (Glowinski 

and Pironneau 1992 and Pillapakkam and Singh 2001).  

5. After advecting φ according to (16), we reinitialize φ to be a distance function near the interface by 

performing one or two iterations of (17) using a fast algorithm developed in Pillaipakkam and Singh 

2001. The interface position φ(t) = 0 does not change during these reinitialization iterations. It is 

necessary to re-initialize φ to ensure that the scheme accurately conserves mass.  

6. The level set function is extended inside and on the surface of the particles such that the contact angle 

is 135º by performing one or two iterations of (18). 
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