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Chapter 1

Introduction

1.1

1.2

Study Guide

A fluid is defined as a material that deforms continuously and permanently under the
application of a shearing stress.

The pressure at a point in a fluid is independent of the orientation of the surface
passing through the point; the pressure is isotropic.

The force due to a pressure p acting on one side of a small element of surface dA
defined by a unit normal vector n is given by —pndA.

Pressure is transmitted through a fluid at the speed of sound.

The units we use depend on whatever system we have chosen, and they include quan-
tities like feet, seconds, newtons and pascals. In contrast, a dimension is a more
abstract notion, and it is the term used to describe concepts such as mass, length and
time.

The specific gravity (SG) of a solid or liquid is the ratio of its density to that of water
at the same temperature.

A Newtonian fluid is one where the viscous stress is proportional to the rate of strain
(velocity gradient). The constant of proportionality is the viscosity, p, which is a
property of the fluid, and depends on temperature.

At the boundary between a solid and a fluid, the fluid and solid velocities are equal;
this is called the “no-slip condition.” As a consequence, for large Reynolds numbers
(>> 1), boundary layers form close to the solid boundary. In the boundary layer,
large velocity gradients are found, and so viscous effects are important.

At the interface between two fluids, surface tension may become important. Surface
tension leads to the formation of a meniscus, drops and bubbles, and the capillary rise
observed in small tubes, because surface tension can resist pressure differences across
the interface.

Worked Examples

Example 1.1: Units, and converting between units

Consider a rectangular block with dimensions 300 mm x 100 mm x 25mm, of mass 10 kg,
resting on a surface (Figure 1.1). The pressure acting over the area of contact can be found
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as follows.

Solution: Since pressure is a stress, it has dimensions of force per unit area. When in
position (a), the force exerted on the table is equal to the weight of the block (= mass X
gravitational acceleration = 98 N), and the average pressure over the surface in contact with

the table is given by
98

100 x 25 x 10—6

In position (b), the force exerted on the table is still equal to 98 N, but the average pres-
sure over the surface in contact with the table is reduced to 98/ (300 x 25 X 10*6) N/m?,
that is, 13,067 Pa.

N/m? = 39,200 Pa

We can repeat this example using engineering units. Let’s take a rectangular block,
made of a different material with dimensions 12in. x 4in. x lin., of mass 201b,, (this is
similar to the case shown in Figure 1.1). Find the pressure acting over the area in the BG
system.

Solution: The unit lb,, is not part of the engineering system of units (see Table 1.1), so
we first convert it to slugs, where
mass in b, 20

mass in slugs = 9.9 = 339 slug = 0.622 slug

So 201b,, = 0.622 slug.

When in position (a), the force exerted on the table is equal to the weight of the block
(= mass x gravitational acceleration = 201bs), and the average pressure over the surface
in contact with the table is 20/(4 x 1)lbs/in.?, that is, 5psi. In position (b), the force
exerted on the table is still equal to 201bs, but now the average pressure over the surface
in contact with the table is 20/(12 x 1)lbs/in.%, that is, 1.67 psi.

Example 1.2: Hydraulic presses and hoists

A hydraulic press uses the transmissibility of fluid pressure to produce large forces. A
simple press consists of two connected cylinders of significantly different size, each fitted
with a piston and filled with either oil or water (see Figure 1.2). The pressures produced by
hydraulic devices are typically hundreds or thousands of psi, so that the weight of the fluid
can usually be neglected. If there is an unobstructed passage connecting the two cylinders,
then p; = po. Since pressure = (magnitude of force)/area,

E:i, so that F:éf
A a a

Figure 1.1: Pressure exerted by a weight resting on a surface. All dimensions in millimeters.
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Figure 1.2: Hydraulic press.

Slave cylinder

To other
-« To front brakes *i | rmar-bralia
Figure 1.3: Hydraulic drum brake system.

The pressure transmission amplifies the applied force; a hydraulic press is simply a hydraulic
lever.

A hydraulic hoist is basically a hydraulic press that is turned around. In a typical
garage hoist, compressed air is used (instead of an actuating piston) to force oil through the
connecting pipe into the cylinder under a large piston, which supports the car. A lock-valve
is usually placed in the connecting pipe, and when the hoist is at the right height the valve
is closed, holding the pressure under the cylinder and maintaining the hoist at a constant
height.

A similar application of the transmissibility of pressure is used in hydraulic brake systems.
Here, the force is applied by a foot pedal, increasing the pressure in a “master” cylinder,
which in turn transmits the pressure to each brake or “slave” cylinder (Figure 1.3). A brake
cylinder has two opposing pistons, so that when the pressure inside the cylinder rises the
two pistons move in opposite directions. In a drum brake system, each brake shoe is pivoted
at one end, and attached to one of the pistons of the slave cylinder at the other end. As the
piston moves out, it forces the brake shoe into contact with the brake drum. Similarly, in
a disk brake system, there are two brake pads, one on each side of the disk, and the brake
cylinder pushes the two brake pads into contact with the disk.

Example 1.3: Finding the pressure in a fluid

Consider the piston and cylinder illustrated in Figure 1.4. If the piston had a mass m = 1 kg,
and an area A = 0.01 m?, what is the pressure p of the gas in the cylinder? Atmospheric
pressure p, acts on the outside of the container.
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Solution: The piston is not moving so that it is in equilibrium under the force due to its
own weight, the force due to the gas pressure inside of the piston (acting up), and the force
due to air pressure on the outside of the piston (acting down). The weight of the piston
= mg, where g is the acceleration due to gravity (9.8 m/s?, or 32.1 ft/s?). The force due to
pressure = pressure X area of piston. Therefore

pA—p,A = mg = 1kgx9.8m?/s=9.8N

That is,
98 N
where Pa = pascal = N/m?.
What is this excess pressure in psi (pounds per square inch)? A standard atmosphere
has a pressure of 14.71by/in.%, or 101,325 Pa (see Table 2.1). Therefore, 980 Pa is equal to

14.7 x 980/101325 psi = 0.142 psi.

Example 1.4: Force due to pressure

In the center of a hurricane, the pressure can be very low. Find the force acting on the
wall of a house, measuring 10 ft by 20 ft, when the pressure inside the house is 30.0in of
mercury, and the pressure outside is 26.3 in. of mercury. Express the answer in (by and V.

Solution: A mercury barometer measures the local atmospheric pressure. A standard
atmosphere has a pressure of 14.71bs/in.?, or 101,325 Pa or N/m? Table 2.1). When
a mercury barometer measures a standard atmosphere, it shows a reading of 760 mm or
29.92in. To find the resultant force, we need to find the difference in pressure on the two
sides of the wall and multiply it by the area of the wall, A. That is,

Force on wall, acting out = (Pinside — Poutside) A
30.0 — 26.3 by in. n
= ———— x 147 ) —= x10ft x 20 ft x 12 — x 12 —
( 2002 ) iz} 10JEx 20 fix 127 x 12
= 52,354 lbs

= 52,354 x 4.448 ﬁbe
Ib;s

232,871 N

We see that the force acting on the wall is very large, and without adequate strengthening,
the wall can explode outward.

Example 1.5: Stresses in a pipe wall

Consider a section through a pipe of outside radius R and inside radius r, as shown in
Figure 1.4. If the yield stress of the material is 7, what is the maximum gauge pressure
Pmaz that can be contained in the pipe?

Solution: For a uniform pressure inside the pipe, the force dF' acting radially outward on
a segment of length dz (where z is in the axial direction) with included angle 6 is

dFF = pressure X area

= prodz

Since the pipe is in static equilibrium (it is not tending to move), this force is exactly
counterbalanced by the forces set up within the pipe material. If the stress is assumed to
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Figure 1.4: Stresses in a pipe wall due to pressure.

be uniform across the pipe wall thickness, then

dF wall stress x area

= 2r(R—r)sinifdz

Therefore,
prodz = 27 (R—r)sini16dz

For small angles, sin(16) ~ 16, so that

and

Pmax = — T
r Y

where t is the wall thickness. In practice, the maximum allowable stress is considerably lower
because of prescribed factors of safety, allowances for the way the pipe was manufactured
and heat treated, possible corrosion effects, and the addition of fittings and joints, which all
tend to weaken the pipe.

Example 1.6: Bulk modulus and compressibility

(a) Calculate the fractional change in volume of a fixed mass of seawater as it moves from
the surface of the ocean to a depth of 5000 ft.

(b) Calculate the fractional change in density of a fixed mass of air as it moves isothermally
from the bottom to the top of the Empire State Building (a height of 350 m, equivalent to
a change in pressure of about 4100 Pa).

Solution: For part (a), from equation 1.1,

dv
:—Ki
dp %

so that the fractional change in volume is given by

av._ _dp
Vv K
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For seawater, the bulk modulus K = 2.28 x 10° N/m? (see Table Appendix-C9). The change
in pressure due to the change in depth may be found as follows. One standard atmosphere
is equal to 101,325 N/m?2, but it can also be expressed in terms of an equivalent height of
water, equal to 33.90 ft (see Table 2.1). Therefore

av. dp 399 x 101,325 N/m?

V K 228x109N/m2 00066 = 0.66%

We see that seawater is highly incompressible.
For part (b), we use the ideal gas law (equation 1.3), where

p = pRT

with R = 287.03m?/s?K for air. When the temperature is constant, we obtain

dp = RTdp
so that
d _ dp
p P
Therefore,
dp 4100

= 0.0405 = 4.05%

p 101325

We see that air is much more compressible than seawater.

Example 1.7: Bulk modulus and compressibility

In Section 1.5, we considered pushing down on the handle of a bicycle pump to decrease
its air volume by 50% (Figure 1.7). If the air was initially at atmospheric pressure and
20°C, and its temperature remains constant, estimate the bulk modulus of air, and the
force required to be applied on the handle if if the pump has an internal diameter of 1.25in.

Solution: Halving the air volume at constant temperature increases its density and pressure
by a factor of two. Since the air was initially at atmospheric pressure, its pressure increases
by one atmosphere (14.696 psi, or 101,325 Pa), and its density increases by an amount equal
to 1.204 kg/m? (see Table Appendix-C.1). Using equation 1.2,

dp 101325

K:pd—p:1.204 T304

Pa = 101,325 Pa

Also, with a pump diameter of 1.25in., the required force is

14.7psi x Lr (1.25in)® lby = 18.11b;

Example 1.8: Compressibility and Mach number

(a) Calculate the change in pressure Ap of water as it increases its speed from 0 to 30 mph
at a constant height.
(b) What air speed V' corresponds to M = 0.6 when the air temperature is 270K ?

Solution: For part (a), using equation 1.4,
Ap = —%P (V22 - V12)

In this case,
Ap = —3pV5
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where 1000 kg/m? and Vo = 30 mph = (30/2.28) m/s (Appendix B). Hence,

30 \?
Ap = —% x 1000 x (228> Pa = 86,565 Pa

That is, the change in pressure is a little less than one atmosphere.
For part (b), from equation 1.6

a=+/vRT
For air, R = 287.03m?/s*K, and v = 1.4. Since M = V/a,

V =aM = 0.6 x /1.4 x 287.03 x 270m /s = 197.6 m/s

Example 1.9: Dynamic and kinematic viscosity

What are the dynamic and kinematic viscosities of air at 20°C? 60°C? What are the values
for water at these temperatures?

Solution: From Table Appendix-C.1, we find that for air at 20°C, u = 18.2 x 107¢ N s/m?
and v = 15.1 x 1075m?/s. At 60°C, u =19.7 x 107 N s/m? and v = 18.6 x 10~ m?/s.

From Table Appendix-C.3, we find that for water at 20°C, u = 1.002 x 1073 N s/m?
and v = 1.004 x 1075m?/s. At 60°C, u = 0.467 x 1073 N s/m? and v = 0.475 x 10~ m?/s.

Note that: (a) the viscosity of air increases with temperature, while the viscosity of
water decreases with temperature; (b) the variation with temperature is more severe for
water than for air; and (c) the dynamic viscosity of air is much smaller than that of water,
but its kinematic viscosity is much larger.

Example 1.10: Forces due to viscous stresses

Consider plane Couette flow, as shown in Figure 1.14. Note that if there is no force acting
on the top plate, it will slow down and eventually stop because of the viscous stress exerted
by the fluid on the plate. That is, if the plate is to keep moving at a constant speed, the
viscous force set up by the shearing of the fluid must be exactly balanced by the applied
force. Find the force required to keep the top plate moving at a constant speed U in terms
of the fluid viscosity u, U, its area A, and the gap distance h. Also find the power required.

Solution: The stress 7, required to keep the plate in constant motion is equal to the viscous
stress exerted by the fluid on the top plate. For a Newtonian fluid, we have

du
Twzﬂ@

wall

so that
U
F=7r,A= 'UEA
We see that as the velocity and the viscosity increase, the force increases, as expected, and
as the gap size increases, the force decreases, again as expected. Also,

htwA  hF
U U
We can use this result to determine the viscosity of a fluid by measuring F' at a known speed
and gap width.
The power required to drive the top plate is given by the applied force times the plate
velocity. Hence,

U2
power = FU = 1,AU = 'MAT

which shows that the power is proportional to the velocity squared.
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Example 1.11: Viscous stress in a boundary layer

A particular laminar boundary layer velocity profile is given by

u y y\?
£ ()
U, 1) )
for y < 6 so that at y = 0, u = U,, where ¢ is the boundary layer thickness, and U, is the

freestream velocity, that is, the velocity outside the boundary layer region. Find the shear
stress 7 as a function of the distance from the wall, y.

Solution: We have
T = H@

C =) ))

o (3-) = 0o

At the wall, where y =0, 7 = 7, and so

L 2uU,
w 6

Example 1.12: Reynolds number

(a) Find the Reynolds number of a water flow at an average speed V = 20 ft/s at 60°F in
a pipe with a diameter D = 6in.

(b) If the flow is laminar at Reynolds numbers below 2300, what is the maximum speed at
which we can expect to see laminar flow?

Solution: For part (a), we have the Reynolds number for pipe flow

_pVD _VD
- v B v

Re

where v is the kinematic viscosity (= p/p). Using Table Appendix-C.4, we find that for
water at 60°F, v = 1.21 x 107° ft2/s, so that

VD 20 ft/sx 0.5 ft
v 1.21x 1075 ft2/s

Re =8.26 x 10°

For part (b), we have

_ Remas X v 2300 x 1.21 x 1075 f12/s
Vas = - — 0.056 ft
D 0.5 ft ft/s

so that the flow is laminar for velocities less than 0.056 ft/s (0.67in/s or 15mm/s). This
is a very slow flow. In most practical applications on this scale, such as in domestic water
supply systems, we would therefore expect to see turbulent flow.
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Problems

1.1 A body requires a force of 400 N to accelerate at a rate of 1.0 m/s?. Find the mass
of the body in kilograms, slugs, and [b,,.

1.2 What volume of fresh water at 20°C will have the same weight as a cubic foot of
lead? Oak? Seawater? Air at atmospheric pressure and 100°C? Helium at atmospheric
pressure and 20°C'?

1.3 What is the weight of one cubic foot of gold? Pine? Water at 40°F? Air at
atmospheric pressure and 60°F? Hydrogen at 7 atmospheres of pressure and 20°C'?

1.4 What is the weight of 5000 liters of hydrogen gas at 20°C' and 100 atm on earth?
On the moon?

1.5 What is the specific gravity of gold? Aluminum? Seawater? Air at atmospheric
pressure and —20°C? Argon at atmospheric pressure and 20°C?

1.6 When the temperature changes from 20°C to 30°C at atmospheric pressure:
(a) By what percentage does the viscosity p of air change?

(b) Of water?

(c) By what percentage does the kinematic viscosity v of air change?

(d) Of water?

1.7 (a) Find the altitude (in meters) where the density of air has fallen to half its value
at sea level.

(b) Find the altitude (in meters) where the pressure has fallen to half its value at sea level.
(¢) Why is the answer to part (a) different from the answer to part (b)?

1.8 How much will it cost to run a 10 hp motor for 8 hrs if 1 kW - hr costs 10 cents?

1.9 A scuba diving tank initially holds 0.25 ft2 of air at 3000 psi. If the diver uses the
air at a rate of 0.05 kg/min, approximately how long will the tank last? Assume that the
temperature of the gas remains at 20°C.

1.10 A hollow cylinder of 30 cm diameter and wall thickness 20 mm has a pressure of
100 atm acting on the inside and 1 atm acting on the outside. Find the stress in the cylinder
material.

1.11  What is the change in volume of 1 kilogram of fresh water kept at 5°C' as it moves
from a depth of 1m to a depth of 100 m. Take the isothermal bulk modulus of water to be
2 x 10* atm.

1.12  (a) Find the dynamic viscosity p of water at 20C.

(b) What is the specific gravity of aluminum? Ethyl alcohol? Ice?

(¢) Calculate the fractional change in volume of 1 kg of seawater at the ocean surface
compared to its volume at a depth of 1000 m.

1.13 A square submarine hatch 60 cm by 60 ¢m has 3.2 atm pressure acting on the outside
and 2.6 atm pressure acting on the inside. Find the resultant force acting on the hatch.

1.14 A Boeing 747 airplane has a total wing area of about 500m?2. If its weight in
level cruise is 500,000 lb¢, find the average pressure difference between the top and bottom
surfaces of the wing, in pst and in Pa.
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1.15 (a) Estimate the average pressure difference between the bottom and the top of a
fully loaded (maximum take-off weight) Boeing 747 wing.

(b) Does this value change with altitude?

(¢) What are the implications of your answer to (b)?

1.16  Find the force acting on the wall of a house in the eye of a hurricane, when the
pressure inside the house is 1,000 mbar, and the pressure outside is 910 mbar. The wall
measures 3.5m by 8m. Express the answer in N and [by.

1.17  The pressure at any point in the atmosphere is equal to the total weight of the air
above that point, per unit area. Given that the atmospheric pressure at sea level is about
10° Pa, and the radius of the earth is 6370 km, estimate the mass of all the air contained in
the atmosphere.

1.18 Estimate the change in pressure that occurs when still air at 100°F and atmo-
spheric pressure is accelerated to a speed of 100 mph at constant temperature. Neglect
compressibility effects.

1.19 For the previous problem, estimate the error in the calculation of the pressure
change due to compressibility. Assume an isothermal acceleration.

1.20 Compute the Mach number of a flow of air at a temperature of —50°C' moving at
a speed of 500 mph.

1.21  Compute the Mach number of bullet fired into still air at a temperature of 60°F" at
a speed of 1500 ft/s.

1.22  An airplane of length 100 ft travels at 300 mph at an altitude of 20,000 ft.
(a) Find the Mach number.
(b) Find the Reynolds based on length.

1.23 A circular hockey puck of diameter D slides at a constant speed V at a height h
over a smooth surface. If the velocity distribution in the gap is linear, and the viscosity of
air is p, find the force acting on the puck required to overcome viscous effects.

1.24 A boogy board of area 1m? slides at a speed of 3m/s over the beach supported

on a film of water 3mm thick. If the velocity distribution in the film is linear, and the
temperature of the water is 30°C, find the force applied to the board.

1.25  An experiment is performed where a plate of area A = 1m? slides at a constant

velocity V' = 1m/s over a stationary surface. The gap between the plates is h = 1 mm,
and it is filled with a fluid of viscosity p. If the force required overcome the viscous drag
opposing the motion of the plate is 1 N, and the velocity gradient is observed to be linear,
what is the viscosity of the fluid?

1.26 A cylinder of radius r rotates concentrically inside a larger cylinder of radius R with
an angular velocity w. The gap between the two cylinders is filled with a fluid of viscosity
. Find the force required to rotate the inner cylinder if the cylinders are of length L and
the velocity varies linearly across the gap.

1.27 A circular shaft of radius R; and length L rotates concentrically within a stationary
cylindrical bearing of radius Re. The gap between the shaft and bearing is filled with an oil
of viscosity p. If the velocity profile is linear, find the angular speed of the shaft in terms
of the torque T applied to the shaft and Ry, Ro, p and L (torque is force times lever arm).
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Figure P1.28

1.28  The viscosity of a Newtonian liquid can be estimated using the instrument shown in
Figure P1.28. The outer cylinder rotates at an angular speed w. If the torque (dimensions
of force times length) required to keep the inner cylinder stationary is 7', and the velocity
distribution in the gap is linear, find an expression for the viscosity u in terms of T', w, H,
6, and R.

1.29 A long cylinder of diameter d; slides at a velocity U inside a long stationary tube
of diameter ds, so that the cylinder and tube are concentric. If the gap is filled with a fluid
of viscosity u, and if the fluid velocity varies linearly across the (small) gap, find the force
per unit length required to keep the inner cylinder moving at a constant velocity.

1.30 A cylinder of length L and diameter D rotates concentrically in another cylinder of
the same length with diameter D + 2¢, where ¢ << D. A fluid of viscosity p fills the gap.
The inner cylinder is driven by a motor so that it rotates at an angular speed w, while the
outer cylinder remains fixed. If the velocity profile in the gap is linear, find (in terms of L,
D, ¢, u and w):

(a) the torque (force times length) exerted on the outer cylinder, and

(b) the power expended by the motor.

1.31 A Taylor-Couette apparatus consists of an inner cylinder and an outer cylinder that
can rotate independently. The gap between the cylinders is filled with a Newtonian fluid.
For a particular experiment at 20°C', we find that when the inner cylinder is held stationary
and a force of 0.985N is applied to the outer cylinder, the outer cylinder rotates at a speed
of 1 Hz. Find the viscosity of the fluid, assuming that the velocity profile in the gap is
linear. The inner and outer cylinders have radii of 200 mm and 150 mm, respectively, and
the cylinders are 300 mm long. Can you suggest which fluid is being tested?

1.32 A 10cm cube of mass 2 kg, lubricated with SAE 10 oil at 20°C' (viscosity of 0.104N -
s/m?), slides down a 10° inclined plane at a constant velocity. Estimate the speed of the
body if the oil film has a thickness of 1mm, and the velocity distribution in the film is
linear.

1.33  When water at 40°F flows through a channel of height h, width W and length L
at low Reynolds number, the flow is laminar and the velocity distribution is parabolic, as
shown in Figure P1.33. When h = 2in., W = 30in., L = 10 ft, and the maximum velocity
is 1 ft/s:

(a) Calculate the Reynolds number based on the channel height and the maximum velocity.
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Figure P1.33

(b) Find the viscous stress at the wall 7,,, and the total viscous force acting on the channel,
assuming 7, is constant.

1.34  Given that the mean free path of a given gas is inversely proportional to its density,
and that the mean free path of air at sea level is 0.089 um, find the mean free path at 30 km
altitude, and at 50 km altitude. Estimate the altitude where the mean free path is 5 mm.
Can we apply the continuum approximation under these conditions?

1.35 By making reasonable estimates of characteristic speeds and lengths, estimate the
Reynolds number for the following:

(a) a professionally pitched baseball

(b) a shark swimming at full speed

(c) a passenger jet at cruise speed

(d) the wind flow around the Empire State Building

(e) methane (CHy) flowing in a 2m diameter pipe at 40 kg/s

(f) a mosquito flying in air.

1.36  Find the characteristic Reynolds number of a submarine of length 120 m moving at
20m/s in water. If a 12:1 model is to be tested at the same Reynolds number, describe the
test conditions if you were to use

(a) water

(b) air at standard temperature and pressure

(c) air at 200 atmospheres and 20°C' (assume that the viscosity is not a function of pressure).

1.37  The largest artery in the body is the aorta. If the maximum diameter of the aorta
is 2¢m, and the maximum average velocity of the blood is 20 cm/s, determine if the flow
in the aorta is laminar or turbulent (assume that blood has the same density as water but
three times its viscosity — blood, after all, is thicker than water).

1.38  Find the height to which water at 300° K will rise due to capillary action in a glass
tube 3mm in diameter.

1.39 A liquid at 10°C rises to a height of 20mm in a 0.4mm glass tube. The angle of
contact is 45°. Determine the surface tension of the liquid if its density is 1,200 kg/m?>.

1.40 What is the pressure inside a droplet of water 0.1 mm diameter if the ambient
pressure is atmospheric?

1.41 A beer bubble has an effective surface tension coefficient of 0.073 N/m. What is
the overpressure inside the bubble if it has a diameter of 1.0 mm?

1.42 A glass ring has a circular cross-section of diameter d and it has a mass of 5 g. What
is the maximum value for d for the ring to continue to float on a water surface at 20°C?



Chapter 2

Fluid Statics

2.1 Study Guide

e The hydrostatic equation, dp/dz = —pg, expresses the pressure variation with depth,
where z is measured vertically up.

e For a constant density fluid, the pressure increases linearly with depth.

e Gauge pressure is the absolute pressure relative to the local atmospheric pressure, that
iS, Pg =P — Patm-
e For fluids in rigid body motion, use Newton’s second law, where the pressure gradient

balances the inertial force acting on a fluid particle due to the total acceleration
(including gravity).

To find the resultant force acting on a submerged surface due to hydrostatic
pressure differences:

Step 1. Choose a coordinate system. It is best to choose a set which makes the task
of expressing the shape of the surface as straightforward as possible. Clearly show the
origin and direction of your coordinate system.

Step 2. Mark an element of area dA on the surface.

Step 3. Find the depth of dA, that is, its distance below the surface, measured
vertically down (that is, in the direction of the gravitational vector).

Step 4. Determine if it is possible to use gauge pressure instead of absolute pressure.
If the gauge pressure acting on dA is py, then p, = p —pa = pg x depth. Then the
force acting on dA is dF' = py x dA (if gauge pressure can be used).

Step 5. Integrate to find F. For a double integral, do the integral at a constant depth
first. The shape of the surface sets the limits of integration.

To find the point of action of the resultant force acting on a submerged surface
due to hydrostatic pressure differences, we take moments:

Step 1. Look for symmetry since this will always lead to simplifications. For instance,
in the example given above, F' will act on y-axis so that £ = 0.

Step 2. Choose the axis about which to take moments (the z-axis in the example given
above). Then dM = y x dF, where y is the moment arm of dF about the z-axis, and
Fxy=[dM = [yxdF = [yp,dA, (if gauge pressure can be used).

13
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Step 3. Integrate to find M. For a double integral, do the integral at a constant depth
first. The shape of the surface sets the limits of integration.

2.2 Worked Examples

Example 2.1: Density and specific gravity

(a) Find the density of a rectangular block with dimensions 300 mm x 100 mm x 25 mm, of
mass 10 kg.

(b) Find the density of a rectangular block with dimensions 12in. x 4in. x 1in., of mass
201by,. (c) Find the specific gravity of the density of the material in part (a).

Solution: For part (a)

mass 10
- = kg/m® = 13,333 kg/m®
P = Somme — 300% 100 % 25 x 109 F9/™ 333 kg/m

For part (b), the unit Ib,, is not part of the engineering system of units, so we first convert
it to slugs, where
mass in (b,

mass 1 siugs 32.1739

Therefore,

. 20x12x12x 12 - \
P = 3yoxioxdx Sue/ftt = 2236 slug/ft

For part (c), we see from Table Appendix-C.7 that this material has a density somewhere
between lead and gold. Its specific gravity is equal to its density divided by the density of
water at 20°C. For the material in part (a), therefore, the specific gravity = 13, 333/998.2 =
13.36.

Example 2.2: Manometers

Consider the manometer shown in Figure 2.5. Let z; be the height of point 1 above a
horizontal reference level, zo be the height of point 2, and so on. If p1 /p3 = 2, and z; = 101in.,
zo = 8in., z3 = 6in. and zg = 14 in., find the ratio ps/ps.

Solution: We know that p; = ps = p, and p3 = ps. Therefore, if we equate pressures at
height z3, we get

p1g(z1 —23) = p3g(z6 — 25) + p2g (25 — 24)
= psg(z6 — 22) + p2g (22 — 23)

That is,

p2 (22 — 23) = p1 (21 — 23) — 3p1 (26 — 22)

and
@_(21723)75(26722)_1_@&

P (22 — 23) 2 papy

and since p1/ps = 2, we see that pa/p3 = 1.
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Py

Square lid
mass m

Figure 2.1: Tank, with stand-pipe.

Example 2.3: Forces and moments on vertical walls

A cubic tank of dimension h contains water of density p. It has a pipe open to atmosphere
located in its top surface. This pipe contains water to a height L, as shown in Figure 2.1.
A square vent of size D in the top surface is just held closed by a lid of mass m.

(a) Find the height L in terms of m, D and p.

(b) Find the force F' due to the water acting on a vertical face of the tank in terms of p, g,
h and L.

(c) Find where this force acts in terms of h and L.

Solution: For part (a), the weight of the lid mg is just balanced by the water pressure
acting on the area of the lid. Using gauge pressure (since the atmospheric pressure acts
everywhere equally), this pressure is given by pg(depth) = pgL. Hence,

pgLD* =myg

and so

pD?

For part (b), we identify an element of area dA on a vertical wall of the tank. Atmospheric
pressure acts everywhere, so dF, the force due to water pressure acting on dA is given by

dF = py dA = pg (depth) dA = pg (L + z) dA

Note that the depth is measured from the free surface, not the top of the tank Since the
wall is of constant width (= k), dA = hdz, and

dF = pg(L+z)hdz

To find F' we integrate

h 9k
F:/ pg (L + 2)hdz = pgh [Lz-i—é]
0 0

so that L
F = pgh? (L + 2)
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For part (c), we take moments about the top of the tank side wall (where z = 0). If dM
is the moment due to dF,
dM = zdF = pg (L + z) zhdA

Integrating, we obtain:

h
M = Fxz = /pg(L+z)zhdz
0

22 B3t
= h|L—+ —
P9 { 2+3L

h  h?
= L=+ =
pat® (L5 + 5 )

Therefore, the resultant force acts at a distance z below the top of the tank, where

M L4 p(L4 2
2= — = =
R 2L + h

Example 2.4: Equilibrium of a hinged gate

Sometimes we have a problem where the equilibrium of a solid body depends on the sum of
the moments. For instance, if a hinged gate is placed in a vertical wall, the water pressure
will try to open the gate unless a moment of sufficient strength is exerted on the gate to
keep it shut. Consider a simple case where the whole wall serves as a gate. The gate is
vertical and rectangular in shape, of width W and height h [Figure 2.2(a)]. The top of the
gate is level with the surface of the water, where it is supported by a frictionless hinge H.
Halfway down the gate, an arm sticks out horizontally and a weight mg hangs at a distance
a from the gate. The bottom of the gate rests against a stop. Atmospheric pressure acts
everywhere. Neglect the weight of the gate and the arm. What is the minimum value of m
necessary to keep the gate shut?

Solution: Consider the free body diagram for the gate [Figure 2.2(b)]. This diagram shows
the forces and moments acting on the gate when it is at the point of opening, so that the
reaction force exerted on the gate by the stop at the foot of the gate is zero. The force F'
exerted by the water pressure on the gate acts from the left in the horizontal direction, and
it tends to rotate the gate in a counterclockwise direction. We know from our previous work
that it has a magnitude F' = %ngVh2 and that it acts at a distance %h from the top of the
gate. The weight mg acts at a distance a horizontally out from the gate, and it tends to
rotate the gate in a clockwise direction. There is also a force Fy exerted by the hinge on
the gate, but the hinge exerts no moment since it is frictionless (a hinge without friction
cannot exert a moment). Since the gate is not moving, it is in static equilibrium under the
action of these forces and moments.

How do we find the critical value of m, where the gate is just on the point of opening?
We know that XF = 0 and XM = 0. If we use XF = 0, we see from the free body diagram
that there is a force exerted at the hinge Fy that needs to be found separately before the
force balance can be solved for m. We may be able to find Fy using the moment equation
>M = 0, but instead we can use the moment equation to find m directly. If we choose the
moment axis to coincide with the top of the gate, then the hinge force Fy exerts no moment
about this axis and we need not consider it any further. We simply balance the moments
about the hinge exerted by the weight mg and the force due to water pressure. That is,

2h

1
mg X a 2ng X 3
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Figure 2.2: (a) Simple gate, hinged at the level of the free surface. (b) Free body diagram of gate.

and so we find
pWh3
m =
3a

Example 2.5: Another hinged gate

In Figure 2.3, a gate is shown, hinged at the top using a frictionless hinge H, located at
the same level as the water surface. There is a rectangular overhang in the gate that sticks
out a distance a horizontally from the gate. There is a stop at the bottom of the gate to
resist the force of the water pressure on the inside of the gate, and to prevent it opening in
a counterclockwise direction. However, as a is increased, there will come a point where the
weight of the water in the overhang will be large enough to cause the gate to move away
from the stop with a clockwise rotation. What is this critical value of a?

Solution: If we were to draw the free body diagram of this gate, we would see that it is
best to take moments about the hinge line since the unknown force exerted by the hinge on
the gate has no moment about this axis.

We could solve the problem by considering each vertical part of the wall separately,
and find the moments about the hinge exerted by the forces acting on each surface (these
moments are all counterclockwise), and then find the moment exerted by the forces acting
on the horizontal parts of the overhang (these moments are clockwise). For equilibrium, the
sum of the moments must be zero, and so we could find a.

However, there is a simpler way. The total horizontal force is equal to the sum of the
forces acting on all the vertical parts of the gate, and therefore it is equal to the force acting
on a vertical wall of the same height, given by % pgW h?, where W is the width of the gate.
It acts at a distance %h from the top of the gate, and so its moment can be found directly.

As for the overhang, there are two approaches. First, we work in terms of the pressures
acting on the top and bottom surfaces of the overhang. We can find the pressure acting
on the bottom surface, multiply by the area of the bottom surface to find the force (since
the bottom surface is at a constant depth, the pressure is constant over the area), and then
multiply by its moment arm to find its (clockwise) moment. The moment arm is equal to a,
since the loading on the bottom surface is uniformly distributed. If we say that clockwise
moments are positive, then, for the bottom surface of the overhang,

pressure on bottom surface = %pgh
force on bottom surface = %pghWa

CW moment due to force on bottom surface = %pghWa X %a
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Figure 2.3: Gate with overhang, hinged at the Figure 2.4: Gate with cut-out.
level of the free surface.

Similarly, for the top surface of the overhang, we find for the clockwise moment:

pressure on top surface = % pgh
force on top surface = % pghWa
CW moment due to force on top surface = — %pghWa X %a

Therefore the resultant clockwise moment exerted by the overhang is %pghWa X %a.

In the second, alternative approach, we note that the moment produced by the overhang
is due to the weight of water contained in it, and this weight is the volume multiplied by the
density, that is, % pghWa. The moment arm of this weight is given by the distance to the
centroid of the volume, located at a point %a out from the hinge, so that the total clockwise

moment exerted by the overhang is % pghWa x %a, as before.

The sum of all the moments is given by the moment due to the weight of water contained
by the overhang, plus the moment due to the water acting on the vertical portions of the
gate. That is, a can be found from:

%pghWa X %a — %ngVh2 X %h =0

That is,
a=V2h

Example 2.6: A final hinged gate

What happens if the overhang in Example 2.4 was negative, as shown in Figure 2.4? That
is, if instead of an overhang there was a cut-out of the same dimensions?

Solution: The moment due to the water acting on the vertical parts of the gate is the same
as in Example 2.4: about the hinge, it is counterclockwise, of magnitude %ngh2 X %h.
For the cut-out, the moment due to pressure acting on the bottom surface is % pghWa x %a
in the clockwise direction, and for the top surface it is %pghWa X %a in the counterclock-
wise direction. The resultant moment produced by the horizontal surfaces of the cut-out
is therefore %pghWa X %a in the clockwise direction, exactly the same as that found in
Example 2.4. So the moment equilibrium of the gate shown in Figure 2.4 is the same as for

the gate shown in Figure 2.3, and the critical value of a is also the same.
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Figure 2.5: Pressure exerted on the bottom of differ- Figure 2.6: Pascal’s rain barrel.
ent shaped containers. From Martin and Conner, Basic

Physics, 8th ed., published by Whit-
combe & Tombs Pty. Ltd., Mel-
bourne, Australia, 1962, with permis-
sion.

Example 2.7: Weight and forces due to pressure

Consider the two containers shown in Figure 2.5. They have a width w, and they are filled
with water to the same height, h. Assume the weight of each container is negligible. From
the hydrostatic equation, we know that the pressure at depth h will be the same for both
vessels. Therefore, if the bottom area A is the same, the force exerted on the bottom of
the container will be equal, that is, F|} = F3, in spite of the obvious difference in the total
weight of liquid contained. Is there a paradox?

Solution: We must be careful to consider all the forces, including the forces acting on
the side walls, the bottom of the container, and the reaction from the surface it is resting
on. Note that the forces on the side walls (Fs) act at right angles to the wall, and that the
horizontal components of the side-wall forces cancel out since they act in opposing directions.

Consider the forces acting on the container shown in the upper part of Figure 2.5. The
vertical component of of Fy acts downward, and for static equilibrium

Ry = pghA + 2F; sina

1

57 — 0. Hence,

The force Fy is given by equation 2.14, where o =
Ry = pghA + pgWh? tana

which is exactly equal to the weight of the water in the container, as it should be.
Consider now the forces acting on the container shown in the lower part of Figure 2.5.
The vertical component of Fy acts upward, and for static equilibrium

Ry = pghA — 2F sina

Hence,
Ry = pghA — pgWh? tan o
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which is exactly equal to the weight of the water in this particular container. So the external
reaction forces on the base in each case (R; and Ry) are equal to the weight of the liquid
in the container, so that R; > Rs, but the force acting on the base from the inside of the
container is the same in each case, since it is due to hydrostatic pressure which only depends
on depth.

In 1646, the French scientist Blaise Pascal gave an interesting illustration of this principle.
He placed a long vertical pipe in the top of a barrel filled with water and found that by
pouring water into the pipe he could burst the barrel even though the weight of water added
in the pipe was only a small fraction of the force required to break the barrel (Figure 2.6).
This is a case where the force due to hydrostatic pressure is overwhelmingly greater than
the external reaction force acting on the base of the barrel.

Example 2.8: Choosing moment axes

Consider a rectangular tank filled with water, with a triangular gate located in its side-wall
(Figure 2.7). The top edge of the gate is level with the surface of the water. Atmospheric
pressure acts everywhere outside the tank. The gate is held on by three bolts. Find the
force in each bolt.

Solution: Since the gate is in static equilibrium, the sum of the forces in any given direction
must be zero. That is, in the horizontal direction,

YF,=Fi+FK+F-F=0

where F' is the force exerted by the water pressure on the gate. It is clear that we need
additional information to solve for Fy, F5 and F3. This information will come from the
moment equation; since the gate is in static equilibrium, the sum of the moments must
also be zero. This is true for any axis we choose, but some axes are better than others.
For example, if we choose the z-axis, F; and F, need not be considered since they have
no moment about the z-axis (their moment arm about the z-axis is zero). Therefore the
moment exerted by F3 about the z-axis must balance the moment exerted by F' about the
z-axis, and F3 can be found directly. Similarly, F» can be found by taking moments about
the y-axis, and so, together with X F,, = 0, we have three equations for three unknowns.

Figure 2.7: Wall with triangular gate.



2.2. WORKED EXAMPLES 21

Figure 2.8: Gate with circular section on one side, and triangular section on the other.

Example 2.9: Complex two-dimensional surfaces

What is the resultant force on the gate shown in Figure 2.8, given that atmospheric pressure
acts everywhere?

Solution: The shape of the gate is rather complex, and it is best to treat it in two parts,
where the forces acting on the left hand side and the right hand side of the gate are found
separately, and the resultant force is found by simple addition. We will not give the full
solution here, only an outline of how the problem may be solved. Here is the basic result
for the left hand side

Flz//pgdydz:/j;pg(z) (/_Omdy) dz:/jlpg(z)\/mdz

where p,(z) = pg(H — z). The integration can be completed using a table of standard
integrals.

To find the force acting on the right hand side, we need to subdivide the area further:
the top half (Ag;) is described by the equation z = a — gy, and the bottom half (Ag) is
described by the equation z = y — a. Here is the basic result for the top half

Fy = /pgdAgt = /Oapg(z) (/Oa—z dy) dz = /Oapg(z) (a—2)dz

For the bottom half

Foy = / pydAzy = [ Oa py(2) < /0 “ dy) dz = [ Oa py(2) (a+ 2) dz

F =F) + Fy + Fyy

Finally

Example 2.10: The tip of an iceberg

Consider an iceberg floating in seawater. Find the fraction of the volume of the iceberg that
shows above the sea surface.

Solution: If the volume of the iceberg is v, and the fraction showing above the surface is
Aw, the buoyancy force acting up on the iceberg is given by ps,g(v — Av), where pgy, is
the density of sea water. For static equilibrium, this must equal the weight of the iceberg,
which is given by p;ccgv, where p;c is the density of ice. That is

Pswg (U — Av) = picegv
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Figure 2.9: Fluid in rigid body motion under the action of gravity and a constant horizontal
acceleration.

so that
g -1 Pice

v Psw

Ice has a density of 920 kg/m? (it is made up of fresh water), and seawater has a density of
1025 kg/m? (Table Appendix-C.7). Hence

AV 0,102
v

so that only about 10% of the bulk of an iceberg is visible above the surface of the sea (see
Figure 2.3).

Example 2.11: Rigid body motion

For the case shown in Figure 2.9, find the horizontal acceleration that would make the water
spill out of the container.

Solution: From equation 2.29, we know that the slope of the water surface under a constant
horizontal acceleration is given by

dz Ay Ay

dr ~ g+a. g

since a, = 0. From the shape of the container, we see that the water will spill out of the

container when
dz %h 2

=

which requires a horizontal acceleration

Problems

2.1 Express the following pressures in psi:
(a) 2.5 x 10° Pa

(b) 4.3 bar

(c) 31in. Hg

(d) 20 ft H,O
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2.3 Express the following absolute pressures as gauge pressures in SI and BG units:
a) 3psia

b) 2.5 x 10° Pa

¢

d

2.4 In a hydraulic press, a force of 200 N is exerted on the small piston (area 10 cm?).
Determine the force exerted by the large piston (area 100 cm?), if the two pistons were at
the same height.

2.5 For the hydraulic press described in the previous problem, what is the the force
produced by the large piston if it were located 2 m above the small piston? The density of
the hydraulic fluid is 920 kg/m?>.

2.6 A device consisting of a circular pipe attached to a rectangular tank is filled with
water as shown in Figure P2.6. Neglecting the weight of the tank and the pipe, determine
the total force on the bottom of the tank. Compare the total weight of the water with this
result and explain the difference.

2.7 Two cylinders of cross-sectional areas A; and As are joined by a connecting passage,
as shown in Figure P2.7. A force F} acts on one piston, and a force Fy acts on the other.
Find F3 in terms of Fy, Ay, As, p, g and H, where p is the fluid density. Ignore the weights
of the pistons.

2.8 If the average person can generate about 1 psi (7000 Pa) of negative gauge pressure
(that is, suction) in their mouth, what’s the longest straw they can possibly drink out of?
The density of air is 1000 kg/m?.

2.9 The gauge pressure at the liquid surface in the closed tank shown in Figure P2.9 is
4.0psi. Find h if the liquid in the tank is
(a) water



24 PROBLEMS Chapter 2
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Figure P2.7

Figure P2.9

(b) kerosene
(¢) mercury

2.10 Find the maximum possible diameter of the circular hole so that the tank shown
in Figure P2.10 remains closed. The lid has a mass M = 50 kg.

2.11 A hollow cylinder of diameter 1m has a closed bottom, which is pushed into a
swimming pool to a depth of 3m. The cylinder is open to atmosphere at the top, and the
swimming pool is at sea level.

(a) Find the force acting on the bottom of the cylinder when the pool contains fresh water,
and the air pressure is taken to be constant everywhere.

(b) How does the answer to part (a) change when the pool contains sea water?

(¢) How does the force found in part (a) change when the variation in air pressure inside

100 kPA {gauge pressura}

Figure P2.10
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Figure P2.12
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the cylinder is taken into account?
(d) Do the answers to parts (a), (b) and (c) change if the swimming pool is moved to the
top of a 5000 m mountain?

2.12  For the manometer shown in Figure P2.12, both legs are open to the atmosphere.
It is filled with liquids A and B as indicated. Find the ratio of the liquid densities.

2.13 A U-tube manometer consists of a glass tube bent into a U-shape, and held verti-
cally. Water is poured in one side and allowed to settle so that the free surface in both legs
is at the same height. Alcohol (specific gravity 0.8) is added to the right hand leg without
mixing so that after the liquids have settled the depth of alcohol in the right hand leg is
100 mm. Find the difference in height between the left and the right leg of the manometer.

2.14 A manometer of constant cross-sectional area A contains two fluids of density p;
and po, as shown in Figure P2.14. One end of the manometer is closed by a weight W, and
the other end is open to atmospheric pressure p,. Find W in terms of p1, p2, h1, h2, g, and
A when hs is large enough to be on the point of lifting up the weight.

2.15 A manometer tube is filled with a two fluids with densities p; = 1000 kg/m?, and
p2 = 800 kg/m?3, as shown in Figure P2.15. The tube has a diameter of 10 mm. One end
is open to atmospheric pressure, and the other end is blocked by a block of steel of mass
M = 0.1 kg. Find the height h where the steel block is about to be dislodged.

2.16  Find the pressure at an elevation of 3000 m if the temperature of the atmosphere
decreases at a rate of 0.006° K/m. The ground-level temperature is 15°C', and the barometer
reading is 29.8in. Hg. (The gas constant for air is = 287.03 m?s%K.)
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2.17  Find the reduction in pressure in N/m? at an altitude of 1000m if the density of
air p in kg/m? decreases with altitude z (in meters) according to p =1 —2 x 10742.

2.18 At a particular point in the Pacific Ocean, the density of sea water increases with
depth according to p = pg + mz?2, where pg is the density at the surface, z is the depth
below the surface and m is a constant. Develop an algebraic equation for the pressure as a
function of depth.

2.19  An underwater cave contains trapped air. If the water level in the cave is 60 m
below the surface of the ocean, what is the air pressure in the cave? Express the answer in
terms of gauge pressure in atmospheres.

2.20  The vertical wall of a dam can withstand a total force of 500,000 N. It has a width
of 10m. At what depth of (fresh) water will it fail?

2.21  Repeat the previous question, where this time the wall is inclined at 60° to the
horizontal.

2.22  Given that the specific gravity of concrete is 2.4, find the vertical reactions Ry and
Ry per unit width of the concrete dam shown in Figure P2.22.

2.23  The gate shown in Figure P2.23 has a width W and a height H and it is pivoted on
a frictionless hinge at a point z* below the surface of the water. The top of the gate is level
with the surface of the water. The water is of density p, and outside the tank the pressure
is uniform everywhere and equal to the atmospheric pressure.

(a) Find the magnitude of the resultant force F' on the gate, in terms of p, g, W and h.
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(b) Find the value of z* so that there is no resultant moment about the hinge tending to
open the gate.

2.24 A gate 3 ft square in a vertical dam has air at atmospheric pressure on one side
and water on the other. The resultant force acts 2in. below the center of the gate. How far
is the top of the gate below the water surface?

2.25 A gate of width W stands vertically in a tank, as shown in Figure P2.25, and it is
connected to the bottom of the tank by a frictionless hinge. On one side the tank is filled
to a depth h; by a fluid density p;; on the other side it is filled to a depth hy by a fluid
density po. Find ho/hq in terms of pa/p; if the gate is in static equilibrium.

2.26  The tank shown in Figure P2.26 has a gate which pivots on a vertical, frictionless
hinge locate at the top of the gate. Find the ratio of the depths of water hj/hy in terms of
the densities p; and ps when the gate is in static equilibrium.

2.27 A rectangular door of width w and height H is located in a vertical wall. There is
water of density p on one side of the door, so that the top of the door is a distance d below
the level of the water. The door is held in the wall by a frictionless hinge at the top of the
door.

(a) Find the force acting on the door due to the water.

(b) Find the minimum moment about the hinge required to keep the door shut.

2.28 A rectangular door of width W and height 2b is placed in side wall of a tank
containing water of density p and depth 3b, as shown in Figure P2.28. The tank is open to
the atmosphere. Find the resultant force due to the water acting on the door, and where it
acts, in terms of p, W, g, and b. Show your coordinate system, and all working.
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Figure P2.29

2.29 A rectangular gate is located in a dam wall as shown in Figure P2.29. The reservoir
is filled with a heavy fluid of density ps to a height equal to the height of the gate, and
topped with a lighter fluid of density p;.

(a) Write down the variation of pressure for z < D, and for D < z < D + L.

(b) Find the resultant force acting on the gate due to the presence of the two fluids.

(c) Find the point where this resultant force acts.

2.30 A primitive safety valve for a pressure vessel containing water is shown in Fig-
ure P2.30. The water has a density p, and it has a constant depth H. The gauge pressure
exerted on the surface of the water is p,,, and the pressure outside the vessel is atmospheric.
The gate is rectangular, of height B and width w, and there is a spring at the hinge which
exerts a constant clockwise moment Mj. Find p,, for which the gate is just on the point of
opening.

2.31 A square gate of dimension b separates two fluids of density p; and ps, as shown in
Figure P2.31. The gate is mounted on a frictionless hinge. As the depth of the fluid on the
right increases, the gate will open. Find the ratio pa/p; for which the gate is just about to
open in terms of Hy, Hy and b.

2.32  The symmetric trough shown in Figure P2.32 is used to hold water. Along the
length of the trough, steel wires are attached to support the sides at distances w apart. Find
the magnitude of the resultant force exerted by the water on each side, and the magnitude
of the tension in the steel wire, neglecting the weight of the trough.

2.33 A rigid uniform thin gate of weight Mg and constant width W is pivoted on a
frictionless hinge as shown in Figure P2.33. The water depth on the left hand side of the
gate is H and remains constant. On the right hand side of the gate the level of water is
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slowly decreased until the gate is just about to open. Find the depth D at which this occurs.

2.34  Repeat Problem 2.27, where this time the wall and the door are inclined at an angle
0 to the horizontal.

2.35  The rectangular gate shown in Figure P2.35 (of width W and length L) is made
of a homogeneous material and it has a mass m. The gate is hinged without friction at
point B. Determine the mass required to hold the gate shut when the water depth at the
point B is H.
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Figure P2.32
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2.36 A gate of constant width W is hinged at a frictionless hinge located at point O
and rests on the bottom of the dam at the point A, as shown in Figure P2.36. Find the
magnitude and direction of the force exerted at the point A due to the water pressure acting
on the gate.

2.37 A rectangular gate 1 m by 2m, is located in a wall inclined at 45°, as shown in
Figure P2.37. The gate separates water from air at atmospheric pressure. It is held shut by
a force F'. If the gate has a mass of 100 kg, find F.

2.38  Figure P2.38 shows a very delicate balancing act. On one side of a weightless wedge
there is fluid of density p;, and on the other side there is fluid of density po. If the wedge
is just balanced, find the ratio py/p; in terms of Hy, Hy and 6.

2.39 A rectangular window of width W is set into the sloping wall of a swimming pool,
as shown in Figure P2.39. Find the point of action of the resultant force acting on the
window.

2.40 A triangular trough contains two fluids, with densities p; and po, and depths H;
and Hs, respectively, as shown in Figure P2.40. Find the resultant hydrostatic force acting
on the divider, and where it acts.

Water

Figure P2.36
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2.41  Arigid, weightless, two-dimensional gate of width W separates two liquids of density
p1 and po, respectively, as shown in Figure P2.41. The gate pivots on a frictionless hinge
and it is in static equilibrium. Find the ratio ps/p; when h = b.

2.42 A gate of uniform composition, and of length L, width w, and mass m, is held by
a frictionless hinge at H and a string at A, as shown in Figure P2.42. Find the water depth
h at which the tension in the string is zero, in terms of m, L, w, 6 and p (the density of the
water). Indicate all your working clearly, and state all your assumptions.

2.43 A symmetrical, triangular prism of uniform composition and width w is balanced
vertically on its apex as shown in Figure P2.43. A fluid of depth H; and density p; acts
on the left hand side, while a fluid of depth H, and density ps acts on the right hand side.
Find the ratio of the densities in terms of the ratio of the depths. Show all your working,
and state all your assumptions.

2.44 A gate of length L and width w separates two liquids of different density, as shown
in Figure P2.44. The gate is held by a frictionless hinge at H. Find the ratio of densities
p2/p1 in terms of L, 0, hy and he when the gate is about to open. Indicate all your working
clearly, and state all your assumptions.

P

Figure P2.39



32 PROBLEMS Chapter 2

P l"__b_"l P,

H 22
N ™ Frictionless
: hinge

Dlwder\

Figure P2.40 Figure P2.41

air };

Figure P2.42

2.45 A rectangular door of width w and length b is placed in the sloping side wall of a
tank containing water of density p and depth H. The top of the door is hinged without
friction at point T, as shown in Figure P2.45. On the other side of the door is a pressurized
chamber containing air at gauge pressure p.. Find the value of p. at the point where the
door is just about to open, in terms of p, w, g, b, H and 6. The top of the tank is open to
the atmosphere, and the door has no mass. Show your coordinate system(s).

2.46  An underwater cave has a gate of width w, uniform thickness, and weight W
mounted on a frictionless hinge at a point 0, as shown in Figure P2.46. Find the inter-
nal gauge pressure p. when the gate is on the point of opening. Indicate all your working
clearly, and state all your assumptions. (Hint: use gauge pressure throughout).

2.47 A horizontal lever arm of length 3a is pivoted without friction at a point 2a along
its length. A cubic mass of density p, dimension b and mass M; hangs from the long part
of the lever arm and a mass M> hangs from the short part of the lever arm. The lever arm
is in balance when mass M; is immersed in water to a depth ¢. When M; = M,, express
the specific gravity of the M7 material in terms of b and c.

- Ny Ny
e
(2]

_]__
6 /el
7z A P P T TP 2 T 77

! 0

Figure P2.43
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2.48 A gate of length L, width w, uniform thickness ¢, and density ps is held by a
frictionless hinge at O and rests against a vertical wall at P, as shown in Figure P2.48. On
the one side the gate is exposed to atmospheric pressure, and on the other side there is
water of density p. When the water depth is h, the gate is about to open. Under these
conditions, find the thickness of the plate in terms of L, ps p, 6, and h. Indicate all your
working clearly, and state all your assumptions, and indicate your coordinate system.

2.49 A gate of width w, length L, mass M, and uniform thickness, separates two fluids
of equal density p, with depths b and 2b, as shown in Figure P2.49. The gate is pivoted
without friction at the hinge H, and it is in equilibrium when it is inclined at an angle 6
to the horizontal. Find the mass M in terms of p, b, w, § and L. Show your coordinate
system, and all your working.

s

Figure P2.46
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2.50 A sightseeing boat has a window in its side of length L and width w, as shown in
Figure P2.50. The bottom of the window is a depth A below the surface. The water has a
density p. Find the magnitude of the resultant force acting on the window due to the water
pressure, and its location, in terms of L, p, 8, g and h. Indicate all your working clearly,
and state all your assumptions, and indicate your coordinate system.

2.51 A weightless gate of width w separates two reservoirs of water of depths h; and hs,
as shown in Figure P2.51. The two sides of the gate are inclined to the horizontal at angles
61 and 2. The gate is pivoted without friction at the hinge H. Find the ratio hy/hy when
the gate is in static equilibrium in terms of 6; and #;. Show your coordinate system, and
all your work.

2.52 A gate of length L and width w is hinged without friction at the point O, as shown
in Figure P2.52. The gate is of uniform thickness and it has a weight of W. There is another

Figure P2.50
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Figure P2.52

weight W suspended a distance L from the hinge by a link that is rigidly connected to the
gate, and at right angles to it. The water has a density p. Find the magnitude of W, in
terms of L, p, 6, and g so that the gate is on the point of opening. Show all your working
and state all your assumptions. Indicate your coordinate system clearly.

2.53 A symmetrical trapdoor with doors of width w and length L is located on the
bottom of a tank that is filled with water of density p to a depth h, as shown in Figure P2.53.
The doors are hinged without friction at the point O, and they have a negligible mass. Find
the value of p, at which the doors are about to open, where p, is the gauge pressure on the
air side of the trapdoors.

2.54  The closed tank shown in Figure P2.54 is filled with water of density p to a depth
h. The absolute pressure in the air trapped above the water is p; = 2p,, where p, is the
atmospheric pressure. The tank has a width w (into the page)

(a) Find the height H of the open water column in terms of p,, p, g and h.

water

7771 air 77777

Figure P2.53
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(b) Find the magnitude of the resultant force due to the water pressure acting on one of the
sloping sides of the tank. Remember that p; = 2p,.

(c) Find the moment (magnitude and direction) due to the water pressure acting on one of
the sloping sides of the tank about the point B. Remember that p; = 2p,.

2.55 A steel gate of density ps, width w, thickness ¢, and length L is pivoted at a
frictionless hinge, as shown in Figure P2.55. The dam is filled with water of density p until
the gate is about to open. The atmospheric pressure is p,.

(a) Find the resultant force (magnitude and direction) due to the water pressure acting on
the gate in terms of p, g, 0, L, w and H.

(b) Find the density of steel in terms of p, g, 6, ¢, L and H.

(c) If the depth of the water was halved, what moment must be applied at the hinge if the
gate is still about to open?

2.56 ! Your first foray into ice fishing takes a bad turn when a sudden overnight thaw
sends your shack to the bottom of the lake with you sleeping inside, as shown in Figure P2.56.
Luckily your shack is completely watertight and maintains atmospheric pressure inside. It
settles on the bottom at an angle §. On one wall of the shack (the one pointing down in the
figure), there is a square window measuring H/3 on a side that is hinged on the top and
swings outward. The top of the window is 3H below the surface.

(a) What is the minimum force required to open the window, in terms of p, g, H and 67
(b) Where would you need to apply this force, in terms of H and 67

2.57 A rigid gate of width w is pivoted at a frictionless hinge as shown in Figure P2.57.
A force F' acts at the top of the gate so that it is at right angle to the gate. The dam is
filled with water of density p of depth 2H. The atmospheric pressure p, acts everywhere
outside the water.

1With thanks to Lester Su
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(a) Find the resultant force vector due to the water pressure acting on the gate in terms of
0, g, 0, L, wand H.

(b) If the water depth was reduced to H, find the minimum force F' required to keep the
gate from opening in terms of p, g, w, 6, and H.

(c) If the water depth was increased again to 2H, find the new value of the minimum force
F required to keep the gate from opening in terms of p, g, w, 8, and H.

2.58 An aquarium of depth h has a passage under the main tank, as shown in Fig-
ure P2.58 (the passage goes into the paper).

(a) Find the magnitude and direction of F),, where F}, is the resultant force due to the water
pressure acting on one half of the passage.

(b) Find the line of action of Fj,.

(c) Find the magnitude and direction of F;, where F} is the resultant force due to the water
pressure acting on both halves of the passage.
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Figure P2.65

2.59 A rectangular block of wood of density p,, is floating in water of density p. If the
block is immersed to 80% of its height, find the specific gravity of the wood.

2.60 A submarine of volume V and weight W is lying on the ocean bottom. What is the
minimum force required to lift the submarine to the surface?

2.61 A beach ball of weight Mg and diameter D is thrown into a swimming pool. If the
ball just floats, what is the diameter of the ball?

2.62 A square tray measuring h X h, supporting a metal cube of dimension h/4, floats
on water immersed to a depth h/10. Find the specific gravity of the metal cube, neglecting
the weight of the tray.

2.63 A rectangular steel barge measuring 15m x 4m in planform with a depth of 1.5m
floats in water (density p = 1000 kg/m?) to a depth of 1m. Find the weight of the barge.
The barge develops a slow leak of 1liter/s. Calculate how long it will take before the barge
sinks.

2.64  Determine what fractions of the volume of an ice cube are visible above:
(a) the surface of a glass of fresh water, and (b) the surface of a glass of ethanol. Do these
answers change if we were on the surface of the moon?

2.65 A 1m? of aluminum, of specific gravity 2.7, is tied to a piece of cork, of specific
gravity 0.24, as shown in Figure P2.65. What volume of cork is required to keep the
aluminum block from sinking in water if both masses are completely submerged?

2.66 A concrete block rests on the bottom of a lake. The block is a cube, 1 ft on a side.
Calculate the force required to hold the block at a fixed depth. The density of concrete is
2400 kg/m?3.

2.67 A cube of an unknown material measuring h per side has a weight Mg in air, and
an apparent weight of M¢g/3 when fully submerged in water. Find the specific gravity of
the material.

2.68 A triangular wooden block is resting on the bottom of a tank, as shown in Fig-
ure P2.68. Water is slowly added to the tank, and when the depth of the water is h = a/2,
the block is on the point of lifting off the bottom. Find the specific gravity of the wood.

2.69 A two-dimensional symmetrical prism floats in water as shown in Figure P2.69.
The base is parallel to the surface. If the specific gravity of the prism material is 0.25, find
the ratio a/d.
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2.70 A cubic container of dimension b that is initially empty floats so that the water
surface is b/4 from the bottom of the container. Water is then added slowly to the container.
What is the depth of water inside the container (with respect to b) when it sinks?

2.71 A rectangular barge of length L floats in water (density p,,) and when it is empty
it is immersed to a depth D, as shown in Figure P2.71. Oil of density p, is slowly poured
into the barge until it is about to sink. Find the depth of oil in terms of H, D, p,, and p,.

2.72 A cylinder of diameter D and length L has one closed end and one open end. It is
filled with air. The open end is lowered vertically down into a pool of water of density p,
and then the air inside the cylinder is pressurized so that no water is allowed to enter the
cylinder. The cylinder floats so that 75% of its length is below the surface of the water.
(a) Find the gauge pressure of the air trapped in the cylinder in terms of p, L, and the
acceleration due to gravity g.

(b) Find the weight of the cylinder in terms of p, L, D and g.

2.73  For the example shown in Figure 2.16,what will happen if the steel cylinders are
replaced by logs of wood?

2.74 A cubic tray measuring D along any of its edges floats on water. Gold coins of
density p, and volume V' are slowly placed in the tray until it is about to sink. At this point
there are n coins in the tray. Neglecting the mass of the tray, find the specific gravity of
gold in terms of D, n, and V.

Figure P2.71
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2.75 A cork float with dimensions a X a X a and specific gravity 0.24 is thrown into a
swimming pool with a water surface area 2a X 2a, and an initial depth of 2a. Derive an
expression for the pressure at the bottom of the pool.

2.76 A circular cylinder of length 3 ft and diameter 6 in. floats vertically in water so that
only 6in. of its length protrudes above the water level. If it was turned to float horixontally,
how far would its longitudinal axis be below the water surface?

2.77 A rigid, helium-filled balloon has a total mass M and volume v, and it is floating
in static equilibrium at a given altitude in the atmosphere. Using Archimedes’ Principle,
describe what happens when ballast of mass m is dropped overboard. How does this answer
change if the balloon is no longer rigid but it is allowed to stretch?

2.78  The circular cylinder shown in Figure P2.78 has a specific gravity of 0.9. (a) If the
system is in static equilibrium, find the specific gravity of the unknown liquid. (b) Do you
think the system is stable?

2.79 A sunken ship of mass M is to be raised using a spherical balloon. If the density of
the gas in the balloon is pp, find the minimum diameter of the balloon necessary to lift the
ship when the ballon is fully under water. Neglect the weight of the balloon material, and
the volume of the submarine.

2.80 A wooden cube with specific gravity of 1/3 floats on water. The cube measures
b x b x b, and it is immersed to a depth of /6. A spherical balloon of radius R filled with
helium is attached to the wooden cube (its volume is 47 R3/3). The specific gravity of air
is 1/800, and the specific gravity of helium is 1/6000. Neglect the weight of the balloon
material. Find R.

2.81 A simple buoy can be made from a weighted piece of wood, as shown in Figure P2.81.
If the wood has a specific gravity of 0.75, and a cross-section w x w and a length L, find
the weight of steel W attached to the bottom of the buoy such that 7L/8 is submerged in
terms of p (density of water), L, w and g. Neglect the volume of the steel.

2.82 A square cylinder measuring a x a x b floats on water so that the b-dimension is
vertical. The cylinder is made of a uniform material of specific gravity equal to 0.8. When
b << a, the cylinder is stable under a small angular deflection. When b >> a, it is unstable.
Find b/a when the cylinder is neutrally stable.

2.83 A rectangular body of length a and width b has a specific gravity of 0.8. It floats
at the interface between water and another liquid with a specific gravity of 0.7, as shown in
Figure P2.83. If a > b, find the depth to which the body is immersed.

2.84 A float and lever system is used to open a drain valve, as shown in Figure P2.84.
The float has a volume V and a density py. The density of the water is p,,. Find the
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maximum force available to open the drain valve, given that the hinge is frictionless. Hint:
first consider the forces acting on the cork float, then consider the free-body diagram of the
gate.

2.85 A rectangular cork float is attached rigidly to a vertical gate as shown in Fig-
ure P2.85. The gate can swing about a frictionless hinge. Find an expression for the depth
of water D where the gate will just open, in terms of a, b, L, and h. The cork float has the
same width W as the gate, and the specific gravity of cork is 0.24.

2.86  The two-dimensional gate shown in Figure P2.86 is arranged so that it is on the
point of opening when the water level reaches a depth H. If the gate is made of a uniform
material that has a weight per unit area of mg, find an expression for H.

2.87 A rectangular gate of width W and height h is placed in the vertical side wall of
a tank containing water. The top of the gate is located at the surface of the water, and
a rectangular container of width W and breadth b is attached to the gate, as shown in

f—263 —=e/3 -

s

Figure P2.84
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Figure P2.87. Find d, the depth of the water required to be put into the container so that
the gate is just about to open, in terms of A and b. The top and sides of the tank and
container are open to the atmosphere. Neglect the weight of the container.

2.88 A rigid gate of width W is hinged without friction at a point H above the water
surface, as shown in Figure P2.88. Find the ratio b/H at which the gate is about to open.
Neglect the weight of the gate.

2.89  If the weightless gate shown in Figure P2.89 was just on the point of opening, find
an expression for B in terms of h.

2.90 A certain volume of water is contained in a square vessel shown in Figure P2.90.
Where the sealing edges of the inclined plate come into contact with the vessel walls, the
reactive forces are zero.

(a) Find the magnitude and direction of the force F required to hold the plate in position.
The weight of the plate may be neglected.
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Figure P2.87
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(b) Where does this force F act?

(c) If the inclined plate is replaced by a horizontal one, find the relative position of the new
plate if the force used to maintain position has the same magnitude as before. The volume
of fluid remains the same as before.

2.91  Figure P2.91 shows a vessel of constant width W that contains water of density
p. Air is introduced above the surface of the water at pressure p;. There is a rectangular
blow-off safety lid of width W and length ¢ hinged without friction at point O, which is
located at the same height as the water surface. At what pressure will the lid open? Express
the answer in terms of W, d, £, 0, p, and m, the mass keeping the lid closed.

2.92 A vessel of constant width W is filled with water, and the surface is open to atmo-
spheric pressure. On one side, a relief valve is located, as shown in Figure P2.92. The relief
valve has the same width as the vessel, and it has a length D. It is hinged without friction
at point A. At point B, a mass m is connected to the gate to keep it shut. Find m in terms
of H, D, 0 and p, where p is the density of water.

2.93  The rectangular submarine escape hatch shown in Figure P2.93 (of width W and
length L) will open when the constant gauge pressure inside the chamber, p;, exceeds a
critical value p;.. The hatch has negligible mass and it is hinged without friction at point A
which is located at a depth D below the surface. Find p;. in terms of W, L, D, p, g and 6.
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Figure P2.92

2.94  The gate AB shown in Figure P2.94 is rectangular with a length L and a width W.
The gate has a frictionless hinge at point A and it is held against a stop at point B by a
weight mg. Neglecting the weight of the gate, derive an expression for the water height h
at which the gate will start to move away from the stop.

2.95  The gate shown in Figure P2.95 has a constant width W. The gate has a frictionless
hinge at point A and it is held against a stop at point B. Neglecting the weight of the gate,
find the magnitude of the resultant force exerted on the gate by the water, and the dimension
b for which there is no force on the gate at point B.

2.96 A tank of water of density p has a symmetric triangular gate of height H and
maximum width 2a, as shown in Figure P2.96. Calculate the force F' exerted by the water
on the gate, and where it acts, in terms of p, g, h, H and a. The air pressure outside the
tank is uniform everywhere.
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2.97  Arigid, weightless, two-dimensional gate of width W separates two liquids of density
p1 and ps respectively. The gate has a parabolic face, as shown in Figure P2.97, and it is
in static equilibrium. Find the ratio ps/p; when h = ¢.

2.98 A rigid, submerged, triangular gate is hinged as shown in Figure P2.98. (a) Find
the magnitude and direction of the total force exerted on the gate by the water. (b) A
weight Mg on a rigid lever arm of length L is meant to keep this gate shut. What is the
depth of water D when this gate is just about to open? Neglect the weight of the gate, and
the weight of the lever arm.

2.99 A circular gate of radius R is mounted halfway up a vertical dam face as shown
in Figure P2.99. The dam is filled to a depth h with water, and the gate pivots without

Fluid density
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Figure P2.97
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friction about a horizontal diameter.

(a) Determine the magnitude of the force due to the water pressure acting on the gate.

(b) Determine the magnitude and sign of the force F required to prevent the gate from
opening.

2.100 An elevator accelerates vertically down with an acceleration of ig. What is the
weight of a 1201b; person, as measured during the acceleration?

2.101 A rocket accelerating vertically up with an acceleration of a carries fuel with a
density p in tanks of height H. The top of the tank is vented to atmosphere. What is the
pressure at the bottom of the tank?

2.102 A car accelerates at a constant rate from 0mph to 60mph in 10s. A U-tube
manometer with vertical legs 2 ft apart is partly filled with water and used as an accelerom-
eter.

(a) What is the difference in height of the water level in the two legs?

(b) Starting from rest, how fast would the car be going at the end of 10 s if the difference
in level were 1.04n. larger?

2.103 The cart shown in Figure 2.9 is now moving upward on a 5° incline at a constant
acceleration a;. Find the value of a; that would make the water spill out of the container.

2.104 A 10cm diameter cylinder initially contains 10 cm of water. It is then spun about
its axis at an angular speed of w. Find the value of w where the bottom of the container
just becomes exposed to air.



Chapter 3

Equations of Motion in Integral
Form

3.1 Study Guide

e Write down the principle of conservation of mass in words.

e What are the dimensions of mass flow rate? What are its typical units?

e What are the dimensions of momentum flow rate? What are its typical units?

e At approximately what included angle do you expect the flow in a diffuser to separate?

e Describe the differences in the flow through a sudden contraction and the flow through
a sudden expansion.

e Describe the differences between turbulent flow and separated flow.

e For unsteady flow, write down the integral form of the continuity equation. Explain
each term in words.

e For unsteady inviscid flow, write down the integral form of the momentum equation.
Explain each term in words.

3.2 Worked Examples

Example 3.1: Computing fluxes

A uniform flow of air with a velocity of 10m/s and density 1.2 kg/m? passes at an angle of
30° in the [x,y]-plane through an area of 0.1 m?, as shown in Figure 3.1. Find the volume
flux, the mass flux, the z-component of the momentum flux, and the kinetic energy flux
passing through the area.

Solution: We first evaluate the volume flux, as per equation 3.3. We will need to express
the velocity in vector notation, and so we choose a Cartesian coordinate system where

V = ui+ vj + wk

and u, v and w are the velocity components in the x, y and z directions, respectively. In
this particular case, u = —10c0s830° = 8.66 m/s, v = —10sin30° = 5m/s, and w = 0, so
that

V =-866i+5j(m/s)

47
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Figure 3.1: Notation for Example 3.2.

Z

Also, the unit vector normal to the area lies in the z-direction, so that n = i. Therefore, for

a uniform flow,

volume flux = /nonA = (n-V)A

= i-(—8.66i+ 5j) A
= —8.66m/s x 0.1m?
—0.866m° /s

We can find the mass flux by using equation 3.4, so that for a uniform flow,

mass flux

_ /n~deA = (n-pV) A = (n-VA)p

= —0.866m>/s x 1.2kg/m3
= —1.04kg/s

For the momentum flux we use equation 3.5. We can obtain the z-momentum flux by
taking the dot product of the momentum vector with the unit vector in the z-direction.
That is, for a uniform flow,

z-momentum flux = i- /(n -pV)VdA = /(n -pV)i-VdA

= (n-pV)uAd = (n-pVA)u
= —1.04kg/s x (—8.66)m/s
= 9.0kgm/s* = 90N

Finally, we can find the kinetic energy flux by using equation 3.6, so that for a uniform

flow,

kinetic energy flux

Example 3.2: Flux

= /(H'PV)%VQdA = (n-pV)iV?A = (n-pVA)iV?
= —1.04kg/s x (3 x 10%) m?/s?
= _52]@9'77”02/83 = —H2watt

of mass and momentum

Water flows through a duct of height 2h and width W, as shown in Figure 3.2. The velocity
varies across the duct according to
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ARl

Figure 3.2: Fully-developed flow through a duct of constant width.

Find the volume, mass, and momentum fluxes over the cross-sectional area of the duct.

Solution: We note that the flow is always in the z-direction, so that V. = Ui, and the area
of interest is the cross-sectional area of the duct, which has a unit normal vector n = i.
Hence, n-V =1i-Ui="U. Also, dA = W dy, and so we have from equation 3.3

/(n-V) dA = /UWdy - /hUm (1—(%)2) W dy

h h
_ () 4y = _ v
_ 2UmW/(1 (%) ) dy = 2Umw[ 3h2L
0

= LU Wh

volume flux

To find the mass flux, we use equation 3.4. For a constant density flow,
mass flux = /(n-pV) dA = p/(n-V) dA

= %pUmWh

To find the momentum flux, we use equation 3.5. For a constant density flow,

momentum flux = /(n-pV)VdA = p/(U)Uiny = pWi/Uzdy

h 2
- pWi/Ui <1—(Z)2) dy
“h

h
B S (Y 2 y 4
- QpUmW1/<1 2(h) +(h)>dy
0
. 2° o
= 929U2 _ & L d
pUle[y 3h2+5h4 .
= BpULWhi

We see that the momentum flux is a vector, pointing in the positive z-direction.

Example 3.3: Mass conservation in steady, one-dimensional flow

Flow in a diverging duct is illustrated in Figure 3.3. Apply the principle of mass conservation
for steady flow through the control volume.
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““““““““““““““ | Flange
Ffange\ 5‘_61/-/_‘:15_/
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Figure 3.3: Flow through a diverging duct.

Solution: The continuity equation for steady flow (equation 3.11) gives

/n-deA =0

The integral is over the entire surface of the control volume. Areas A; and As are the only
places where mass is entering or leaving the control volume, and so

/andA: /nl-plvldA1+/n2-p2V2dA2 =0

From Figure 3.3, we have V1 = Vii, Vo = V4i, n; = —i, and ny = i. Therefore,
- / pVidA + / paVadA = 0 (3.1)
A1 AZ

If the densities and velocities are uniform over their respective areas, we obtain
— mViAr + paVody = 0

and we recover the result for a one-dimensional steady flow first given in Section 3.2.

Example 3.4: Conservation of mass

A cylinder of diameter d and length ¢ is mounted on a support in a wind tunnel, as shown
in Figure 3.4. The wind tunnel is of rectangular cross section and height 4d. The incoming
flow is steady and uniform, with constant density and a velocity V;. Downstream of the
cylinder the flow becomes parallel again, and the shape of the velocity profile is as shown.
Find the magnitude of V5 in terms of V;.

i FVeiocity =,

24 Velocity = V,/2

d Velocity = ¥,

Figure 3.4: A cylinder in a wind tunnel.
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Solution: We draw a large control volume that encloses the cylinder but does not cut
the walls of the duct (CV in the Figure). As in any control volume problem, we examine
each face of the control volume in turn. We see that there is flow into the control volume
over the left hand face and flow out over the right hand face. The downstream flow is not
actually one-dimensional since the velocity is varying across the cross-section of the wind
tunnel. Nevertheless, it can be treated as one-dimensional by considering separately the
two regions where the velocity is different, and then adding the result. By applying the
continuity equation in this way we obtain

pVi (4€d) — pVa (2d) — p5 V3 (2¢d) = 0

so that

Example 3.5: Mass conservation in steady, two-dimensional flow

In many cases the velocity is not uniform over the inlet and outlet areas and the one-
dimensional assumption cannot be made. However, the streamlines of the flow entering and
leaving the control volume are often parallel, and then it may be possible to assume that
the pressure is uniform over the inlet and outlet areas (see Section 4.2.2.)

Consider the steady duct flow shown in Figure 3.5. The duct has a constant width W,
and the inflow and outlet velocities vary along the flow in the z-direction, and across the
flow in the y-direction. The flow is two-dimensional since the velocity distributions depend
on two space variables (z and y). For this particular problem, the velocity distribution over
the inlet is parabolic, but as the area expands the profile becomes less “full” at the exit.
(a) Find the average velocities over the inlet and outlet areas, where the average velocity V'
is defined by

V= % / udA (3.2)

so that V is equal to the volume flow rate divided by the cross-sectional area A.
(b) Find the velocity ratio Via/Vini.

Solution: For part (a), first consider the inlet area. Here

_ 1 1 b
Vi Al/ud 1 TN /_bVl(y) Wdy
2 b Y
= 1 g %%
2W J, V’”l[ (b) } dy

Y e o
} T &
dyZ
2B © Vm.Z
4,
)

Figure 3.5: Two-dimensional duct showing control volume.
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S T bl—(y)zd = 2y,
1 b 0 b Yy 3Vml

For the outlet area

- _ 1 2 y 1
%—Il/udAl—m/) Vm2<1—§>Wdy—§Vm1

For part (b), we use mass conservation. The application is very similar to that given in
Example 5.2, in that the continuity equation reduces to that given in equation 3.1, where

—/ pVidA +/ p2VadA = 0
Al A2

To evaluate the integrals over areas A; and A; we use symmetry, so that

B

b
—2/(P1V1)Wdy+2/(P2V2)Wdy =0
0 0

Since the densities are uniform over the inlet and outlet areas,

b B
Y\ 2 B y
2P1 le 1- E dy - 2p2 ‘/7n2 1-— E dy
0 0
31b 21B
Y Yy
Vil ly— 25| = pVme |y — =2
P1Vm1 [y SbQL P2Vm2 [y 23}0
2b B
P1Vm1§ = P2Vm2§
Finally v i
m2 _ p14b
Vi1 P2 3B

Example 3.6: Mass conservation for a moving piston in a cylinder

A leakproof piston moves with velocity V' into a cylinder filled with liquid of density p, as
shown in Figure 3.6. The cylinder has a cross-sectional area A, and the spout has an exit
cross-sectional area A;. Find U, the velocity at the exit from the spout, at any instant
of time. The flow may be assumed to be one-dimensional. Solution: We select a control

volume not containing the piston or cylinder but only the spout. Since the spout is always
full of fluid, the mass of fluid inside this control volume is not changing with time, and the
flow is steady for this control volume. Therefore

0
a/pdv—()

We see that there is a mass influx over the left face of the control volume, and there is an
outflux over the right face, so that

/n~deA = /—i~pVidAc+/i~pUidAS = —pVA.+pUA, = 0

Hence,
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Figure 3.6: Control volume for an unsteady piston flow.

Example 3.7: Momentum balance in steady, one-dimensional flow

In Section 3.4, we considered the continuity equation applied to the diverging duct flow
shown in Figure 3.3. We now find the z-component of the force exerted by the duct on
the fluid, as in Figure 3.7. The flow is taken to be inviscid, steady and horizontal, and the
pressures and densities are constant over areas A; and As.

Solution: Consider the z-component of the momentum equation. This equation is found
by taking the dot product of equation 3.20 with the unit vector in the z-direction, i. For
steady, inviscid flow

i-/(n-pV)VdA = —i-/npdA+i~/png+i-Rext

so that
/(nopV)i~VdA = 7/i-npdA+0+szt

where RY, . is the z-component of the force exerted by the duct on the fluid, and it was
taken to be positive in the z-direction (the actual direction will come out as part of the
solution, so that if we find that F) is negative, it means it actually points in the negative
z-direction).

The integrals are over the entire surface of the control volume. Areas A; and As are the
only places where the pressure is not atmospheric, so

—/i~npdA = _/_plgdAl_/+p2gdA2 = /plgdAl_/ngdAZ

Areas A; and A, are the only places where mass is entering or leaving the control volume,
SO

/ (- pV)i-VdA = / (—p1Va) (+V2) dA; + / (p2V2) (+V2) dA,

| Flange
e

Figure 3.7: Flow through a diverging duct.
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= [ovrans [ pvias,
Therefore
2 = / prg Ay + / pog dAs — / V2 dA; + / V2 dA,
For a one-dimensional flow, this simplifies to
RZ, = — (p1gA1 — pagAz) + paV5 Ay — ;i VA

which is the same result given by equation 3.13.

Example 3.8: Momentum balance in steady, two-dimensional flow

In Section 3.4, we considered the continuity equation applied to the diverging duct flow
shown in Figure 3.5. We now find the z-component of the force exerted by the duct on the
fluid, as in Figure 3.8. The flow is steady, two-dimensional flow, and the duct has a width
W. The pressure outside the duct is atmospheric everywhere, and over the inlet and outlet
areas the gauge pressures are pi4 and pyg, and the densities are p; and po, respectively. The
pressures and densities are uniform over A; and As.

Solution: If we ignore gravity and friction, the only forces acting on the fluid will be
forces due to pressure differences, and the force exerted by the duct on the fluid, Rext. We
begin by finding RZ ,, the x-component of the force exerted by the duct on the fluid. The

ext?
z-component of the momentum equation (equation 3.20) is given by

/(n -pV)i-VdA = pigA1 — pagAs + RL,,
so that

Ry, = p2gA1 —pigAs */P1V12 dA, +/P2V22 dAs

b B
= ngAl — plgAQ — 2p1W/V12 dy + QPQW / ‘/22 dy
0 0

= pogdy —pigds — Ep V2, Wb+ 2p,V2,WB

What about the y-direction? We see that the momentum only changes in the z-direction,
and that the forces due to pressure differences only act in the a-direction. So the y-
component of the force exerted by the duct on the fluid must be zero.

Az Pag

Figure 3.8: Two-dimensional duct showing control volume.
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Example 3.9: Lift and drag on an airfoil

Consider an airfoil of span b placed in a wind tunnel of height h, as shown in Figure 3.9.
The flow is steady and of constant density, and the airfoil develops a lift force and a drag
force. The lift force Fy, is defined as the force on the airfoil normal to the direction of the
incoming flow, and the drag force Fp is defined as the force in the direction of the incoming
flow. The incoming flow velocity is uniform across the wind tunnel with a magnitude V7,
but downstream the velocity varies across the tunnel in the y-direction. The velocity in
the wake of the airfoil is less than Vj, and therefore, by conservation of mass, the velocity
outside the wake must be greater than V7. There is also a pressure difference, so that ps
is less than p1, but since the streamlines at stations 1 and 2 are parallel, the pressures are
constant across the wind tunnel (we will ignore gravity). Find the lift and drag forces.

Solution: We start with the z-momentum balance for the control volume shown in Fig-
ure 3.9 to find RZ ,, the z-component of the force exerted by the airfoil on the fluid. If

ext’
viscous forces on the surface of the control volume can be neglected,

/(n-pV)i-VdA = —/i-npdA—l—Rfjxt

Hence hj2
—pvith2 [ pvibdy = (- pa)bh o+ B2
0
For the velocity distribution shown,
RZ, = —(p1—p2)bh— pVibh + 5V, bh

RZ ., is the force exerted by the airfoil on the fluid, and so the force exerted by the fluid on
the airfoil is —R?,,, and therefore Fp = —R7_,. That is,

Fp = (p1 — p2) bh + pVibh — 5pVs, bh

We can show that V5, = 2V; by using the continuity equation. In addition, we can make
the drag force nondimensional by dividing through by % pViEbh (we recognize this as the
upstream dynamic pressure multiplied by the cross-sectional of the tunnel). Therefore

Fp  (p1—p2) 2

spVEOh — ppVE 3

Non-dimensionalizing has cleaned up the final expression, and it has also revealed the pres-
ence of a pressure coefficient on the right hand side, similar to that introduced in Sec-
tion 4.3.1, as well as a new nondimensional parameter called a drag coefficient, Cl,, on the

Figure 3.9: Lift and drag on an airfoil in a windtunnel.
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left hand side, defined by

Fp
Cp = 1 172
5PV bh

In the usual form of the drag coefficient, the plan area of the wing is used instead of the
cross-sectional area of the tunnel. That is, for a rectangular wing,
Fp

Cp = ——— 3.3
b %prbc (3:3)

where c is the chord length of the airfoil (the distance between its leading and trailing edges).
To find the lift force, we start by finding RY_,, the y-component of the force exerted by

ext>
the airfoil on the fluid using the y-momentum balance. That is,

/(n~pV)j~VdA = —/j-npdA—&—Rgm

Since there is no flow in the y-direction

0 = /pbbdx—/ptbdx—i—Rgzt
b t

where pp and p; are the pressure distributions over the bottom and top faces of the control
volume. RY , is the force exerted by the airfoil on the fluid, and so the force exerted by the
and therefore F;, = —RY ,. That is,

fluid on the airfoil is —RY
F, = b</pbd:c—/ptdx>
b t

éwfn
Therefore, the lift force can be found by measuring the pressure distributions on the upper
and lower tunnel walls. When we divide through by % pV2bh, we obtain

v = vz (e [mee)
= T — x
ovebh — Sovan \ LT

We now have a nondimensional lift coefficient C, on the left hand side. In its more usual
form, it is defined using the plan area of the wing so that

Fr

oL = L 3.4
b Sevibe (34)

Example 3.10: Unsteady flow and moving control volumes

A steady jet of water having a velocity V; hits a deflector which is moving to the right at a
constant velocity Vy (see Figure 3.10). The deflector turns the flow through an angle = — 6.
Find F, the force exerted by the fluid on the deflector. Assume that the effects of gravity
and friction can be neglected.

Solution: The first thing to note is that the problem is unsteady for a stationary observer.
This complicates the analysis considerably since we would need to use the unsteady form
of the continuity and momentum equations, and Bernoulli’s equation cannot be used. If
the observer moves with the deflector, however, the problem becomes steady and these
complications are avoided. A velocity transformation using a constant translating velocity
has no effect on the forces acting on a system. That is, the forces are the same whether
a motion is viewed in a stationary coordinate system or one that is moving at a constant
velocity. The control volume for this steady flow is shown in Figure 3.11.
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Figure 3.10: Moving deflector: unsteady Figure 3.11: Moving deflector: steady flow.
flow.

Along the surface of the jet, we see that the pressure is constant and equal to the atmo-
spheric pressure. The pressure is also constant across the jet over the inlet and outlet areas,
since the streamlines are parallel and the jet is in free fall. Since the flow in this framework is
steady and there is no friction, Bernoulli’s equation applied along any streamline that starts
at the inlet and finishes at the outlet indicates that the magnitude of the inlet and outlet
velocities are equal. The deflector changes the velocity direction, but not its magnitude.
Then, from the continuity equation, we know that the cross-sectional area of the jet, A,
must remain constant.

The momentum equation gives

fFf/pndA = /(n~pV)VdA

where +F is the force exerted by the fluid on the deflector, and so —F is the force exerted
on the fluid by the deflector. The pressure is constant everywhere, so that f pndA = 0 for
the control volume shown. Over the inlet, the velocity is (V; — V)i, and n = —i. Over the
outlet the velocity magnitude is the same, but its direction is different, so that the outlet
velocity is (V; — V) (— cos i+ sinfj), and n = — cos#i + sin 6j. Hence,

—F = —p(V; = Va)?iA+ p(V; — Via)* (— cos 0i + sin 0j) A
= —pAV; - Va)? [(1 4 cos0) i — sin 0]
and so: F = pA(V; —Vy)?[(1+ cos0)i— sinbj]

We can check this answer by taking the limit when V; = Vj, and the limit when § = 7. In
both cases, F = 0, as expected.

Example 3.11: Drag force on a cylinder

Consider the flow shown in Figure 3.12. The reduced velocity region downstream of the
cylinder is called the wake (see figure 4.3). This flow was first considered in Example 3.3,
where mass conservation was used to show that V5 = %Vl. Here, we find the forces that act
on the cylinder. The presence of the cylinder changes the pressure and momentum of the
fluid, because the cylinder exerts a force on the fluid, R.,;. Hence, the force exerted by the
fluid on the cylinder is equal to — R, and this force Fp is the drag force. We will now
find Fp, assuming that forces due to viscous stresses and gravity are negligible, and that
the pressure is constant over the inlet and outlet areas.
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d Velocity = Vo

24 {Velocity = V,/2

d Velocity = ¥,

Figure 3.12: A cylinder in a wind tunnel.

Solution: To find the drag force Fp, we need to find R.,:, which is the force by the cylinder
on the fluid. As usual, we will assume R, acts in the positive z-direction. It is important
to understand how R.,; makes an appearance in the momentum equation for the fluid. In
our choice of control volume, the cylinder is inside the volume, and the surface of the volume
“cuts” through the support holding the cylinder in place. In effect, it is the support that
applies the force to the fluid inside the control volume.

The resultant force acting on the fluid is then given by R, plus the force due to pressure
differences. In finding the rate of change of momentum, we treat the downstream flow as
two separate one-dimensional flows and add the result. Newton’s second law applied to the
fluid in the control volume then gives,

Reyy + pr (46d) — pa (46d) = pV (2Ld) + p (§V2)* (2Ld) — pVE (4td)
With Fp = —Rey, and Vo = %Vl (from Example 3.3), we obtain:
Fp =4(p1 —p2) td — 3pVild (3.5)

Example 3.12: Converging duct

A steady flow of air of constant density p passes through a converging duct of constant
width w, as shown in Figure 3.13. Find the average pressure p,, acting on the side walls,
given that viscous and gravity forces may be neglected. The continuity equation for the
control volume shown in the figure gives

2hw Vi = hw Vs

so that
Vo =2V

The z-component momentum equation gives
p1 (2hw) = ps (hw) — Fpe = pV3' (hw) — pV{ (2hw)

where F},; is the z-component of the force due to the pressure acting on the side walls. The
total force due to pressure on the side wall, F},, is given by

h
F - 2 av L = 2 avysy -
p Pav(Lw) P 251n9w
and so
Fpp = Fpsinf = pgohw
Hence

2p1 — P2 — Pav = pV22 - 2pV12
and so, by using the result that Vo = 2V}

Dav = 2p1 — P2 — 2p‘/12
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2h

Figure 3.13: Control volume for the flow through a converging duct.

Example 3.13: Control volume selection

Consider the steady flow of constant density air through the sudden expansion shown in
Figure 3.14. We aim to find the force exerted by the fluid on the duct, Fp.! Suppose that
at the entry and exit from the control volume CV; (stations 1 and 2, respectively), the
flow is approximately uniform so that the assumption of one-dimensional flow can be made.
However, inside the control volume the flow is very complex (see, for example, Figure 3.15)
and there are energy losses. We assume that at the entry to and exit from the control
volume the pressures are approximately uniform across the flow, and at the exit it is equal
to atmospheric pressure. In addition, at the entrance to the sudden expansion, the flow
is approximately parallel, so that the pressure is approximately equal to the pressure in
the recirculation zones (we will show why this is so in Section 4.2.2), and therefore we can
assume that the pressure acting at section s-s is uniform across the flow.

We use two different control volumes to illustrate how the control volume selection
governs the information that can be obtained. First, we use a control volume that encloses
the duct, and cuts through the walls of the duct at an upstream section (C'V; in Figure 3.14).
Where the control volume cuts through the walls, there will be a reaction force R.,; acting
on the fluid, so that the force exerted by the fluid on the duct is given by Fp = —Reyze. If
we use gauge pressure in the z-component momentum equation, we obtain

Reyt +plgA1 = pV22A2 - ,OV12A1

since the only place where the pressure is not atmospheric is at station 1. There is no viscous
force acting on this control volume. Outside the duct there is no fluid motion, and there
are clearly no viscous stresses acting. Over the parts of the control volume surface that lie
inside the duct, there are no velocity gradients, and again there are no shearing stresses
acting. For this control volume, viscous forces do not play a role. By using the continuity
equation (V1 A; = V5 A5) we obtain, since Fp = —Reyt,

Fp = p1gAy + pVi Ay (1 - j;) (3.6)
If we know the geometry of the duct, we can determine Fp by measuring the gauge pressure
upstream, and either the inlet or the outlet velocity.

Second, we choose a control volume that coincides with the inside surface of the sudden
expansion (C'V; in Figure 3.14). There is now no reaction force acting on the fluid inside
the control volume since the control volume does not cut the walls of the duct. The pressure
distribution along the horizontal surfaces of the control volume is unknown, but the resulting
force is in the vertical direction so it does not enter the x-momentum equation. However,

1This problem was adapted from an example given in the book Engineering Fluid Mechanics by Alan
Mironer, published by McGraw-Hill, 1979.
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Figure 3.14: Alternative control volumes for the flow through a sudden expansion. The regions of
separated flow are shown as recirculating eddies.

Figure 3.15: Free-body diagram for the sudden expansion.

the viscous shearing stresses along the horizontal surfaces give rise to a horizontal frictional
force on the fluid, —F,, which must be included (the sign conforms to what is shown in
Figure 3.14: we expect it to be a retarding force for the fluid, but its actual direction will
come out of the analysis). The z-component momentum equation becomes

—F, 4+ p1As — paAs = pVi Ay — pVi2 Ay

By using the continuity equation and gauge pressures (so that pi14 = p1 — p2, since pa = p,)

Fy = pigAs + pVi 44 (1 - f) (3.7)
2
We see that F, is positive since As > A1, and therefore it will act in the direction shown
in the figure. If the duct is relatively short, or if the expansion ratio As/A; is large, F, is
usually small compared to the force due to pressure differences, and it can be neglected.
The gauge pressure at the upstream location pi4 can then be found by measuring either V;
or Vs.
Finally, we can draw the free-body diagram for the duct showing the forces acting in the
horizontal direction (Figure 3.15). When the viscous force F;, is negligible,

Fp = —p1y (A2 — Ay).

The same result can be obtained by combining equations 3.6 and 3.7 for F;,, = 0.

Problems

3.1 Air at 60°F at atmospheric pressure flows through an air conditioning duct mea-
suring 64n. by 12in. with a volume flow rate of 5 ft3/s. Find:

(a) The mass flow rate.

(b) The average velocity.
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3.2 Water at 20°C' flows through a 10em pipe with a volume flow rate of 0.5m3/s.
Find:

(a) The mass flow rate.

(b) The average velocity.

(¢) The momentum flow rate.

3.3 The largest artery in the body is the one that supplies blood to the legs. As it
comes down the trunk of the body, it splits into a Y-junction, as shown in Figure P3.3.
Blood with specific gravity of 1.05 is pumped into the junction at a speed V3 = 1.5m/s.
The diameter of the entrance flow is d; = 20mm, and for the exit flow do = 15mm and
d3 = 12mm. If the mass flow rates at stations 2 and 3 are equal, find V5 and V3.

3.4 Air enters an air conditioning duct measuring 1 ft by 2 ft with a volume flow rate
of 1000 ft3/min. The duct supplies three classrooms through ducts that are 8in. by 15 in.
Find the average velocity in each duct.

3.5 In the hovercraft shown in Figure P3.5, air enters through a 1.2 m diameter fan at
a rate of 135m3/s. It leaves through a circular exit, 2m diameter and 10 em high. Find the
average velocity at the entry and the exit.

3.6 Water flows radially toward the drain in a sink, as shown in Figure P3.6. At a
radius of 50 mm, the velocity of the water is uniform at 120 mm/s, and the water depth is
15mm. Determine the average velocity of the water in the 30 mm diameter drain pipe.

3.7 A circular pool, 15 m diameter, is to be filled to a depth of 3 m. Determine the inlet
flow in m3/s and gpm if the pool is to be filled in 2 Ars. Find the number of 2in. diameter
hoses required if the water velocity is not to exceed 10 ft/s.

3.8 A tank 10 ft in diameter and 6 ft high is being filled with water at a rate of 0.3 ft3/s.
If it has a leak where it loses water at rate of 30 gpm, how long will it take to fill the tank
if it was initially half full?

3.9 Is the tank shown in Figure P3.9 filling or emptying? At what rate is the water
level rising or falling? Assume that the density is constant. All inflow and outflow velocities
are steady and constant over their respective areas.

3.10 A gas obeying the ideal gas law flows steadily in a horizontal pipe of constant

diameter between two sections, 1 and 2. If the flow is isothermal and the pressure ratio
1 . .

p2/p1 = 3, find the velocity ratio V3/V;.

3.11 A gas obeying the ideal gas law enters a compressor at atmospheric pressure and

Figure P3.3:
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Figure P3.5:

50mmfv‘:I

L =120 mm/s

115 mm

Drainpipe
Plan view Side view

Figure P3.6:

20 C, with a volume flow rate of 1m?/s. Find the volume flow rate leaving the compressor
if the temperature and pressure at the exit are 80°C' and 200 bar, respectively.

3.12  For the vessel shown in Figure P3.12, the flow is steady, with constant density, and
it may be assumed to be one-dimensional over the entry and exit planes. Neglect forces due
to gravity, and assume the pressure outside the box is atmospheric. Find the mass flow rate
and the volume flow rate out of area Az, and find the - and y-components of the force
exerted on the box by the fluid, in terms of p, Ay, # and V;.

3.13 A rectangular duct of width w and height h carries a flow of air of density p and
viscosity p. The velocity profile is parabolic, so that

U (Y
Umi h

where U, is the maximum velocity, which occurs on the centerline where y = 0.

2 m diametar

100 mm diameter 75 mm diameter

2 mis —— e e ——1.2m/s

:I 1 150 mm diameter

1.5 més
Figure P3.9
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(a) Plot the shear stress as a function of y/h, given that h = 10 mm, w = 200 mm, U, = 1
m/s, the air temperature is 20C, and the pressure is atmospheric.

(b) Find the area-averaged velocity U (need to integrate).

(c) Find the volume flow rate and the mass flow rate through the duct.

(d) Find the Reynolds number of the flow based on the average velocity and the height of
the duct.

(e) Find the skin friction coefficient Cy = 7,/(3 pUz), where 7, is the shear stress at the
wall of the duct.

3.14  Find the force F' required to prevent rotation of the pipe shown in Figure P3.14
about the vertical axis located at the point O. The pipe diameter is D, and the fluid density

is p.

3.15 A porous circular cylinder, of diameter D is placed in a uniform rectangular wind
tunnel section of height 4D and width W, as shown in Figure P3.15. The cylinder spans the
width of the tunnel. An air volume flow rate of ¢ per unit width issues from the cylinder.
The flow field is steady and has a constant density. The pressures p; and ps are uniform
across the entry and exit areas, and the velocity profiles are as shown. A force F' is required
to hold the cylinder from moving in the z-direction. Find U, in terms of ¢, U; and D. Then
find F.

3.16 A jet of cross-sectional area A; steadily issues fluid of density p at a velocity Vi,
into a duct of area As = 541, as shown in Figure P3.16. The pressures at sections A and B
are uniform across the duct. The surrounding flow in the duct has the same density p and a
velocity Vo = %Vl. The flow mixes thoroughly, and by section B the flow is approximately
uniform across the duct area. Find the average velocity of flow at Section B in terms of V7,
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and the pressure difference between sections A and B in terms of p and V.

3.17  Water at 60 F enters a 6in. diameter pipe at a rate of 3000 gpm. The pipe makes
a 180° turn. Find the rate of change of momentum of the fluid. If the pressure in the pipe
remains constant at 60 psi, what is the magnitude and direction of the force required to
hold the pipe bend?

3.18  Air of constant density p flows at a constant velocity V' through a horizontal pipe
bend, as shown in Figure P3.18, and exits to the atmosphere. The pipe is circular and has
an internal radius R. A force F must be applied at the flange to keep the bend in place.
Find F in terms of p, R, and V. Neglect any pressure changes, and assume that the flow is
one-dimensional.

3.19 An effectively two-dimensional jet of water impinges on a wedge as shown in Fig-
ure P3.19. The wedge is supported at its apex such that the lower surface remains horizontal.
Find the angle for which the magnitude of the z- and y-components of the reaction force at
the apex are equal. Neglect gravity. The pressure is atmospheric everywhere.

3.20 A steady water jet of density p is split in half as it encounters a wedge of included
angle 2a and constant width w, as shown in Figure P3.20. For the velocity distributions
given in the diagram, find the force required to hold the wedge in place in terms of Uy, h,
«, and the density of water p, assuming that the viscous effects and the weight of the water
and wedge are negligible and the pressure is uniform everywhere.
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Figure P3.19

Figure P3.20

3.21  Air is flowing through a duct of square cross-section of height h, as shown in Fig-
ure P3.21. An orifice plate with a square hole measuring %h by %h is placed on the centerline.
The plate experiences a drag force Fp. The air density p is constant. Far upstream, the
pressure and velocity are uniform and equal to p; and Uj, respectively. Far downstream,
the pressure is po and the velocity distribution is as shown. A manometer measures the
pressure difference, and shows a deflection of A. The manometer fluid has a density p,,.
The flow is steady, and friction can be neglected. Find the maximum velocity at the outlet
Us in terms of Uy, and the drag force Fp in terms of h, p, py,, A, g and Uy .

3.22  Figure P3.22 shows a two-dimensional flow of a constant density fluid between
parallel plates a distance 2h apart. The velocity distribution is given by V' = V,,, (1 —y?/ hz),
where V,,, is the maximum velocity. Find the average velocity and the mass flow rate.

3.23  Two rectangular air-conditioning ducts, of constant width W (into the page), meet
at right angles as shown in Figure P3.23. The flow is steady and the density is constant.
All velocities are normal to the exit and entrance areas. The velocity profiles at stations 1
and 2 are parabolic. Find the mass flow rate at station 3. Is it in or out?

Figure P3.21
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3.24  In the rectangular duct shown in Figure P3.24, two parallel streams of a constant
density gas enter on the left with constant velocities U; and Us. After mixing, the gas exits
on the right with a parabolic profile and a maximum value of Us. Find Us in terms of U
and Us.

3.25  Figure P3.25 shows a sketch of a simple carburetor. The air enters from the left
with a uniform velocity, and flows through a contraction where fuel-rich air of the same
density enters at a rate of ¢m?3/s. The mixture then exits on the right with a triangular
velocity profile as shown. The flow is steady, and the cross-sectional areas at stations 1
and 2 are rectangular of constant width . Assume that all velocities are normal to their
respective areas. Find ¢ when Us = 2U;.

3.26 A two-dimensional duct of constant width carries a steady flow of constant density
fluid (density p), as shown in Figure P3.26. At the entrance, the velocity s constant over
the area and equal to Uy. At the exit, the velocity profile is parabolic according to U =
(a) Find Uy, as a function of Uy, b and h.

A Q = l -X
v, iy

E =1 +_v_

U,k

g m>fsec fue! flow

Figure P3.25
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(b) Will U,,, increase or decrease if a heater is inserted into the duct as shown?

3.27 A constant density fluid flows steadily through a duct of width W, as shown in
Figure P3.27. Find U,, in terms of U; and U;. What is the momentum flux passing through
the exit of the duct?

3.28  For the rectangular duct of width W shown in Figure P3.28, the flow is steady and
the density is constant. Find U, in terms of Uj, a and b, and find the y-component of the
momentum flux leaving the duct.

3.29  For the constant density flow in the rectangular duct of width W shown in Fig-
ure P3.29, find U, in terms of a, b and Uy, and the (vector) momentum flux leaving the
duct.

3.30 A fluid enters the rectangular duct shown in Figure P3.30 with constant velocity
Uy and density p;. At the exit plane, the fluid velocity is Us and the density has a profile

SR T

Figure P3.28
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described by a square root relationship, with a maximum value of py. Find py in terms of
p1 when U; = Usy. Also find the net vector momentum flux leaving the duct.

3.31 A fluid flows through a two-dimensional duct of width W, as shown in Figure P3.31.
At the entrance to the box (face 1), the flow is one-dimensional and the fluid has density
p1 and velocity U;. At the exit (face 2), the fluid has a uniform density ps but the velocity
varies across the duct as shown. Find the rate at which the average density inside the box
is changing with time.

3.32  The wake of a body is approximated by a linear profile as sketched in Figure P3.32.
The flow is incompressible, steady and two-dimensional. The pressures p; and ps are uniform
across the flow. Outside of the wake region the flow is inviscid and the velocity is Us. The

Figure P3.31
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Figure P3.33

upstream velocity, Uy, is uniform.

(a) Find Uy /U; as a function of ¢/H.

(b) Find the pressure coefficient (po — p1)/(3pU?) as a function of §/H.

(c) Find a nondimensional drag coefficient Fpp/(1pUZH) as a function of §/H, where Fp is
the drag force per unit body width.

3.33  Air of constant density flows steadily through the rectangular duct of width W
shown in Figure P3.33. At the entrance, the velocity is constant across the area and equal
to Ugy. The velocity at the exit has a parabolic distribution across the duct, with a maximum
value U,,. The pressure is constant everywhere. By using the continuity equation, find the
ratio b/a such that U,, = Ug,,. Then find the force F exerted by the flow on the duct,
assuming that the wall friction and the force due to gravity are negligible.

3.34 A steady, constant density flow of air with a uniform velocity U; is sucked into a
two-dimensional Venturi duct of width w and enters the rest of the duct at Station 2 with
the velocity profile shown in Figure P3.34. Find:

(a) Uy in terms of U;.

(b) The force required to hold the duct in terms of Ui, a, w, 6, pag (the gauge pressure at
Station 2), and the air density p.

3.35 A cylinder is held in a two-dimensional duct of constant width W and height H,
as shown in Figure P3.35. As a result, the downstream velocity distribution becomes as
shown. The density p is constant, and the flow is steady. Find U; in terms of Uj, and find
the force exerted by the fluid on the cylinder in terms of p, U;, W and H. Neglect frictional
effects and assume that p; = po.

3.36 A propeller is placed in a constant area circular duct of diameter D, as shown in
Figure P3.36. The flow is steady and has a constant density p. The pressures p; and py are
uniform across the entry and exit areas, and the velocity profiles are as shown.

(a) Find U, in terms of U;.
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Figure P3.34
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Figure P3.35

(b) Find the thrust T exerted by the propeller on the fluid in terms of Uy, p, D, p; and ps.

3.37 Air of constant density p enters a duct of width W and height H; with a uniform
velocity V;. The top wall diverges (as shown in Figure P3.37) so that the pressure remains
uniform everywhere. Downstream, on the top and bottom wall, the velocity profiles are given
by V/V; = (y/5)1/4. Given that Hy = 1.1H;, find § in terms of Hj, and find the magnitude
and direction of the force F' exerted by the air on the duct in terms of a nondimensional
force coefficient F/pVZH W (ignore viscous stresses).

3.38 A fluid of constant density p enters a duct of width W and height k1 with a parabolic
velocity profile with a maximum value of V7, as shown in Figure P3.38. At the exit plane
the duct has height ho and the flow has a parabolic velocity profile with a maximum value
of V5. The pressures at the entry and exit stations are p; and ps, respectively, and they are
uniform across the duct.

(a) Find V4 in terms of Vi, hy and hs.

(b) Find the magnitude and direction of the horizontal force F' exerted by the fluid on the
step in terms of p, V3, W, p; and pso, hy and ho. Ignore friction. Note that at the point

Circuiar duct

(%)

Propeilor
Figure P3.36
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where the flow separates off the step, the flow streamlines can be assumed to be parallel.

3.39 Two fences are placed inside a horizontal duct of height H and width W, as shown
in Figure P3.39. Air of constant density p flows steadily from left to right, and the velocity
upstream of the fences (station 1) is constant across the area and equal to U,,. The velocity
downstream of the fences (station 2) has a parabolic distribution across the duct with a
maximum value U,,. The pressures at stations 1 and 2 are p; and ps, respectively, and they
are constant across the duct area.

(a) Find the ratio Uy, /Ugy.

(b) Find the force F' acting on the fences, assuming that the wall friction is negligible.
Express the result in terms of the nondimensional drag coefficient Cp = F/ (%prH W),
and the nondimensional pressure coefficient

Cp = (p1 —p2)/ (5pU2).

24
it ;— = R £t U = Um (1 i (ﬁ]ﬂ
151 > P2 ol
v, > H 0 T x
1 2

Figure P3.39
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3.40  Air of constant density p flows steadily into a rectangular duct of constant width
W, as shown in Figure P3.40. There is inflow over area A; = 3hW and outflow over area
Az = 2hW. Area A = hW. Across A; and A, the velocities are constant and equal to
Uy, and Us, respectively, as shown. Across Aj the velocity distribution is parabolic with
a maximum value of U,,. Over area A; the gauge pressure pi4, over area A, the gauge
pressure is pag, and over area As the pressure is atmospheric. There are no losses. ajsCan’t
apply Bernoulli here!

(a) Find the ratios Uy /Uy, and U, /U;.

(b) Find the pressure difference p1, — p2y in terms of p and Uy.

(c) Find the force F acting on the fluid (magnitude and sign) between stations 1 and 3, in
terms of p, Uy and pg.

3.41 The entrance region of a parallel, rectangular duct flow is shown in Figure P3.41.
The duct has a width W and a height H, where W > H. The fluid density p is constant, and
the flow is steady. The velocity variation in the boundary layer of thickness § at station 2
is assumed to be linear, and the pressure at any cross-section is uniform.

(a) Using the continuity equation, show that U /Us =1 —§/H.

(b) Find the pressure coefficient C,, = (p1 —p2)/ (3pU7). You will need Bernoulli’s equation
(see Chapter 4).

(¢) Show that

Iy =1— U722 _ 875
1pURWH U? 3H
where F), is the total viscous force acting on the walls of the duct.
3.42 A steady jet of water of density p hits a deflector plate of constant width w inclined
at an angle a, as shown in Figure P3.42. For the velocity distributions given in the figure,
find the horizontal component of the force required to hold the deflector plate in place in

terms of p, Uy, w, b, and «, assuming that viscous and gravity effects are negligible and
the pressure is uniform everywhere.
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3.43 A circular pipe carries a steady flow of air of constant density p. The flow exits to
atmosphere in two places through circular exits, labeled 1 and 2 in Figure P3.43. At the
entrance (labeled 0 in the figure), the gauge pressure is py, the velocity is V', and the pipe
diameter is D. At exit 1, the diameter is D and the velocity is V/2. At exit 2, the diameter
is D/2. Assume one-dimensional, frictionless flow, and ignore gravity.

(a) Find the velocity at exit 2 in terms of V.

(b) Find the magnitude and direction of the force required to hold the duct in place.

Show your control volumes and all your working clearly, state all your assumptions, and
indicate your coordinate system.

3.44 A rectangular duct of constant width w carries a steady air flow of constant density
p as shown in Figure P3.44. The velocity V; is constant across the inlet area, and the outflow
velocity V5 has a velocity profile described by a quartic function, with a maximum value
of Vay,. The flow exits to atmospheric pressure, and the gauge pressure at the inlet is py.
Ignore viscous effects and gravity.

(a) Find V3, in terms of V.

(b) Find the vector force required to hold the duct in place in terms of p, Vi, h, w and 6,
when pi4 = % pV{. Express the answer in nondimensional form.

3.45 A steady flow of air of constant density p issues from two exit areas in a two-
dimensional duct of width w and height 2h, as shown in Figure P3.45, and for each exit
plane the velocity distribution is parabolic with a maximum value of V5. The inflow to the
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duct has a uniform velocity distribution of velocity of magnitude V7, and it makes an angle
« with the outlet duct. The pressure is atmospheric at the exit, and the gauge pressure at
the inlet is p14. Ignore the weight of the fluid.

(a) Find the ratio V2/V; (this is a number).

(b) Find the force (z- and y-components) required to hold the duct at the connecting flange
in terms of h, w, p, V1, a, and pyg.

3.46 A circular pipe of diameter D carries a steady flow of air of constant density p
and a constant gauge pressure of p,. A portion of the flow exits to atmosphere through a
circular exit of diameter D/4 at a velocity V., = 4V}, as shown in Figure P3.46. Assume
one-dimensional flow and ignore gravity. Show your control volumes and all your working
clearly, state all your assumptions, and indicate your coordinate system.

(a) Find V4 in terms of V4.

(b) Find the magnitude and direction of the force required to hold the length of duct between
the two flanges in place in terms of p, V3, D and 6.

3.47  Air flows steadily through a bend of width w, as shown in Figure P3.47. Gravity
and viscous forces are not important, and the air density p is constant. Show all your
working.

(a) Find the ratio V5 /V; (this is a number).

(b) Find the resultant force required to hold the bend in place in terms of p, V4, h, w, p1g,
D2g, and 0.

3.48 A horizontal steady jet of water of density p, height h, width w and velocity V hits
a flat plate mounted on a wheeled cart. The jet hits the flat plate at right angles. The cart
starts moving and accelerates until it reaches a constant velocity V/2. Find the magnitude
and direction of the frictional force acting on the cart when it reaches its terminal speed, in
terms of p, h, w, and V.

3.49 A steady jet of air of constant density p issues from a two-dimensional duct of width
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D and depth a (into the page), as shown in Figure P3.49, with velocity distribution that is
parabolic. The jet supports a plate of width L, depth a (into the page) and weight W, and
the air is deflected horizontally. The side of the plate facing the jet experiences an average
pressure p, and the pressure is atmospheric everywhere else. Ignore the weight of the fluid.
(a) Find the average pressure p in terms of L, D, p, and Uy,.

(b) Find the weight of the plate W in terms of L, D, a, p, and U,,.

3.50 A steady flow of air of constant density p issues from a two-dimensional duct of
width w and height 2h, as shown in Figure P3.50, with a velocity distribution that is
parabolic with a maximum value of V5. The inflow to the duct has a symmetrical, triangular
distribution of velocity with a maximum value of V;. The pressure is atmospheric at the
exit, and the gauge pressure at the inlet is p;4. Ignore the weight of the fluid.

(a) Find the ratio V2/V; (this is a number).

(b) Find the force (z- and y-components) required to hold the duct at the connecting flange
in terms of h, w, p, V1, and p1g.

3.51 A fluid of constant density p flows over a flat plate of length L and width W, as
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shown in Figure P3.51. At the leading edge of the plate the velocity is uniform and equal
to Up. A boundary layer forms on the plate so that at the trailing edge the velocity profile
is parabolic. Find:

(a) The volume flow rate ¢ leaving the top surface of the control volume where y = 4.

(b) The a-component of the momentum flux leaving the control volume through the same
surface.

3.52 A model of a two-dimensional semi-circular hut was put in a wind tunnel, and the
downstream velocity profile was found to be as shown in Figure P3.52. Here, Uy, is the
freestream velocity, p is the air density, and D is the hut diameter. Assume that viscous
effects and pressure variations can be neglected.

(a) Draw the flow pattern over the hut (remember that continuity must be satisfied).

(b) Find the average velocity in the y-direction over the area located at y = D.

(c) Find the nondimensional force coefficient Cp, where Cp = F/ (3pUZ2 D), and F is the
x-component of the force acting on the hut per unit width.

3.53 A cylinder of length W is located near a plane wall, as shown in Figure P3.53. The
incoming flow has a uniform velocity Us,, and the downstream flow has a linear velocity
profile U = Uy y/H. Assuming steady, constant density, constant pressure flow, find:

(a) The average velocity in the y-direction over the area located at y = H.

(b) The z-component of the force exerted on the cylinder by the fluid. Neglect viscous
forces.

3.54 A fluid of constant density p flows steadily over a cylinder that is located far from
any solid boundary, as shown in Figure P3.54. Upstream, the flow has a uniform velocity Us,
and downstream the velocity distribution in the wake is triangular with a maximum value
of Uy, as shown below. The pressure is atmospheric everywhere. For the control volume
shown, the xz-component of the velocity is uniform on every surface of the control volume
and equal to Uj.

(a) Find the average value of the velocity normal to surfaces 3 and 4.
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(b) Find the drag force acting on the cylinder (that is, the force exerted by the fluid on the
cylinder).

3.55 A layer of fluid of kinematic viscosity v and depth h flows down a plane inclined at
an angle 6 to the horizontal so that the flow is laminar with a velocity profile described by

u . (ﬂy)

— =sin | —

U. 2h
where U, is the velocity at the free surface (see Figure P3.55). Use a control volume analysis
to find U, in terms of v, g, h and 6.

3.56 A square sled, where each side is of length L, rides on thin layer of oil of thickness
h and viscosity p, as shown in Figure P3.56. The sled carries a tank of water of density p,
as well as a circular water jet of diameter d, inclined at an angle « to the horizontal. If the

Figure P3.55
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sled moves at a constant velocity Vs, and the exit velocity of the jet is V. (relative to the
cart), find h in terms of the other variables.

3.57 A circular water jet of diameter D, velocity V', and density p impinges on a ver-
tical plate supported by a frictionless hinge a distance L above the hinge, as shown in
Figure P3.57. Find the direction and magnitude of the moment that needs to be exerted
around the hinge to maintain the plate in a vertical position. Note that D << L.

3.58 A horizontal jet of water, of constant velocity U; strikes a deflector such that the
jet direction is smoothly changed, as shown in Figure P3.58. Find the ratio of the vertical
and horizontal components of the force required to hold the deflector stationary in terms of
the angle 0. Neglect gravitational effects. Does this force ratio change when the deflector
moves to the right with velocity U,?

Area A ¥

Figure P3.58
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Figure P3.60

3.59 A horizontal jet of air of width W strikes a stationary scoop with a velocity V, as
indicated in Figure P3.59. If the jet height h remains constant as the air flows over the plate
surface, find:

(a) The force F required to hold the plate stationary.

(b) The change in F when the plate moves to the right at a constant speed V/2.

3.60  Water from a stationary nozzle impinges on a moving vane with a turning angle of
6 = 60°, as shown in Figure P3.60. The vane moves at a constant speed U = 10m/s, and
the jet exit velocity is V = 30m/s. The nozzle has an exit area of 0.005m?. Find the force
exerted by the fluid on the vane required to keep U constant.

3.61  Water of density p flows steadily through a smooth contraction of width w, as shown
in Figure P3.61, and exits to atmospheric pressure. A Pitot tube in the jet is connected to
a manometer where the other end is open to atmospheric pressure. The manometer fluid
has the same density as water. The jet of water strikes a vane that turns the fluid an angle
0.

(a) Find the ratio V5/V; (this is a number), given that the gauge pressure upstream of the
contraction is 12pV2.

(b) Find V5 in m/s when h = 1m.

(c) Find the resultant force required to hold the vane in place in terms of p, V4, Ha, w and
0. Gravity and viscous forces are not important.

(d) If the vane now moves at a constant velocity V5/2 to the right, how does the resultant
force required to hold the vane change?

3.62 A snow plow mounted on a truck clears a path 12 ft wide through heavy wet snow.
The snow is 84n deep and its density is 101b,,/ft>. The truck travels at 20 mph, and the
plow is set at an angle of 45° from the direction of travel and 45° above the horizontal, as
shown in Figure P3.62. The snow is therefore discharged from the plow at an angle of 45°
from the direction of travel and 45° above the horizontal. Find the force required to push
the plow.2

3.63 A pump submerged in water contained in a cart ejects the water into the atmo-

2 Adapted from Fox & McDonald, Introduction to Fluid Mechanics, 4th ed., John Wiley & Sons, 1992.
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sphere, as shown in Figure P3.63. The flow area leaving the ejector is 0.01 m?, and the exit
of the ejector is at the same height as the top edge of the side of the cart.

(a) If the ejection flow velocity is 3m/s, the flow will be returned to the cart. Find F, the
force necessary to restrain the cart.

(b) If the ejection flow velocity is 4m/s, the flow will just clear the side of the cart. Find
F', the force necessary to restrain the cart.

(c) Find L, the minimum distance between the ejection exit and the side of the cart for the
flow in part (b).

(a) &)
Figure P3.63



Chapter 4

Kinematics and Bernoulli’s
Equation

4.1 Study Guide

e What is meant by the term “steady, one-dimensional flow?”

e Give the definitions of a streamline, and a pathline. Under what condition are they
the same?

e Write down Bernoulli’s equation. Under what conditions does this relationship hold?

e Explain the terms “total pressure” and “dynamic pressure”. What does a Pitot tube
measure? What does a Pitot-static tube measure?

e To find the velocity of a flow using a Pitot probe, what measurements need to be
made?

e Draw a sketch illustrating a simple stagnation point in a uniform flow. What is the
stagnation pressure? Why do you think it is sometimes called the “total” pressure?

4.2 Worked Examples

Example 4.1: Flow in a jet

Consider a tank draining through a small orifice, where the orifice outlet points up at an
angle 0, as in Figure 4.1. The magnitude of the exit velocity is still V., = 1/2gH. As the jet
issues into the atmosphere, the vertical component of the velocity, w, decreases under the
action of gravity. At the top of the jet trajectory w = 0, and then becomes negative. The
horizontal component of the fluid velocity, u, remains constant throughout the trajectory
when air friction is neglected, because the only force acting is due to gravity. Find z,,, the
maximum height to which the jet rises.

Solution: Consider a streamline that starts at the exit and follows the path of the jet. The
pressure everywhere outside the jet is atmospheric, and since there are no pressure gradients
across the jet (it is in free fall), the pressure inside the jet is also atmospheric. If there are
no losses,

%Vf = %VQ + gz = constant

81
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Figure 4.1: Tank draining with exit pointing up at angle 6.

Now V2 = u? +w?, and for the exit velocity, V.2 = u2 +w?. Since the horizontal component
of the fluid velocity remains constant, u. = u = constant (there are no forces acting on the
fluid in this direction). Bernoulli’s equation reduces to

tw? = Iw’ + gz (4.1)

€

The highest point of the trajectory is given by point where z = z,, and w = 0. That is,
gem = 3w
Since w, = V,sinf = /2gH sin 0,
GZm = % (29H sin? 9)

and
2m = Hsin? 6

We can check this answer by taking limits. For § = 90°, z,,, = H, and for 8 = 0°, z,, = 0,
as expected.

Example 4.2: Forces exerted by an exiting jet

A tank sits on a balance scale to measure the vertical force F, and F,. The tank has an
opening near the bottom that points up at an angle 6 to the horizontal (Figure 4.2). The
water level is kept constant so that W, the weight of the tank and its contents, is constant
and the flow is steady. We will assume that there are no losses, and that the fluid is of
constant density p.

(a) What is F,?

(b) What is F,?

(c¢) Find W,,, the weight of water in flight between the jet exit and the point of maximum
jet height.

Solution: For part (a) we use the control volume labeled C'V;. The z-momentum leaving
the control volume is given by the product of the mass flow rate pV, A, and the z-component
of the velocity V. sin 8, where V, is the velocity and A, is the cross-sectional area of the jet
at the exit. The momentum equation in the z-direction then gives

W+ F, = pV.A. (V.sin0)

Hence,
F, = W+ pV. A, (Vesin®) (4.2)
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Figure 4.2: Reactive forces acting when a tank drains.

For part (b), we can use either control volume C'V; or control volume CVa, since the
horizontal component of the momentum does not change in the z-direction (no forces act
in that direction). The z-momentum leaving the control volume is given by the product of
the mass flow rate pV, A, and the z-component of the velocity V, cosf, so for CV; or CV;

F, = pV.A. (Ve cosb) (4.3)

For part (c), we can use either control volume C'Vs or control volume C'V3. For CV3, the
momentum equation in the z-direction is

W Wy +F. =0

From equation 4.2,
Wy =F,—W = pV.A. (V.sinb) (4.4)

For control volume CV3, the momentum equation in the z-direction becomes
7VVw = *,OVEAe (‘/p sin 9)

so that
Wy = pVeAe (Vesinb)

which is the same result obtained using C'V2 (equation 4.4). That is, the z-momentum
leaving C'V; is the same as the weight of the water in flight.

Example 4.3: Jet on a cart

A pipe of cross-sectional area A is connected by a flange to a large, pressurized tank which
supplies air of constant density p to a jet of cross-sectional area %A, as shown in Figure 4.3.
The tank sits on a cart equipped with frictionless wheels so that it can roll freely, and the
jet exits to atmosphere with a velocity V. Find:

(a) The gauge pressure p, in the pipe at the flange;

(b) The force holding the pipe to the tank at the flange, Fy; and

(c) The tension in the string holding the cart, T

Solution: For part (a), we will assume that the flow is quasi-steady (it is a large tank),
and that there are no losses downstream of the flange, so that Bernoulli’s equation can be
used between a point in the pipe at the location of the flange, where the velocity is V7, and
a point in the exit plane of the jet, where the pressure is atmospheric. Hence

Py + 3V = §pV?
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Figure 4.3: Jet on a cart, held in place by a string.

From the continuity equation we have

ViA= 3V

=

so that
Pg = %pVQ
For part (b), we use control volume CV1 and apply the z-momentum equation. Let
Rt be the x-component of the force exerted by the pipe on the fluid. Therefore

Rept +pgA = %pV2A —pVPA = %pVQA — TlﬁpV2A
so that
Rewy = —pgA+ %pVQA = —ngQA + 13—6pV2A = —%pVQA

Ry is the force exerted by the pipe on the fluid. Therefore the force exerted by the
fluid on the pipe is —Rest, so Fy, the force holding the pipe to the tank at the flange is
FD = _(_Rea:t) = Rezt~

For part (¢), we use control volume CV2 and apply the z-momentum equation. Let F.
be the xz-component of the force exerted by the cart on the fluid. Therefore

F. = ipV?A

Hence the force exerted by the cart on the fluid is —F,, and T, the tension in the string
holding the cart , is T = —(—F,) = F..

Problems

4.1 Consider the velocity field given by V = zi + yj. Find the general equation for the
streamlines. Sketch the flow field.

4.2 Consider the velocity field given by V = zi + yj. Find the general equation for the
pathlines. Compare with the results obtained in the previous problem.

4.3 Consider the velocity field given by V = 27 !i + 272j. Find an equation for the
streamline passing through the point [1, 2].

4.4 Consider the velocity field given by V. = 2%i — zyj. Find an equation for the
streamline passing through the point [2,1]. How long does it take a particle of fluid to move
from this point to the point where x = 47
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4.5 For the flows shown in Figure P4.5, give reasons why Bernoulli’s equation can or
cannot be used between points:

(a) 1 and 2;

(b) 3 and 4;
(c) 5 and 6;
(d) 7 and 8;
(e) 8 and 9;
(f)

f) 9 and 10.

4.6 For the duct flow shown in Figure P4.6, the pressure at the exit (point 4) is atmo-
spheric, the density p is constant, and the duct is of constant width w.

(a) Sketch the flow pattern.

(b) Can you use Bernoulli’s equation between points 2 and 4?7 Why?

(c) Are the pressures at points 2 and 3 equal? Why?

(d) Find the gauge pressure at point 2 in terms of p and V;.

(e) Find the gauge pressure at point 1 in terms of p and V;.

4.7 Fluid passes through a fan placed in a duct of constant area, as shown in Fig-
ure P4.7. The density is constant.

(a) Is the volume flow rate at station 1 equal to that at station 2? Why?

(b) Can Bernoulli’s equation be applied between stations 1 and 2? Why?

4.8 Consider a constant density gas flowing steadily through a smooth, circular con-
traction. Calculate the velocity and pressure as the radius decreases to half its original
value. State all your assumptions.

Figure P4.6



86 PROBLEMS Chapter 4

) o)

Figure P4.14

4.9 Air flows through a smooth contraction so that the velocity increase by a factor of
5. What is the change in pressure? Express the answer in non-dimensional form. List all
your assumptions.

4.10 A Venturi tube is a tube that has a decreasing and then increasing diameter, and
it is designed to have very small losses. Assume one-dimensional flow, and neglect gravity.
(a) What is the maximum included angle on the expansion to avoid separation?

(b) If losses can be neglected, find the change in pressure at the narrowest point in terms
of the diameter ratio, the upstream velocity, and the fluid density. Express the answer in
non-dimensional form.

4.11 A Pitot tube is used to measure the total pressure in a wind tunnel. If the total
pressure is 1200 Pa, and the local static pressure is 100 Pa, what is the wind tunnel speed
if the air density p is 1.2 kg/m3? What assumptions did you make?

4.12  Consider a constant density gas flowing steadily over an airfoil. Far upstream the
velocity is Vy. Halfway along the top surface, the velocity has increased to 2V;. Halfway
along the bottom surface, the velocity has decreased to V5/2. Find the pressure difference
between the top and bottom surface at this location. State all your assumptions.

4.13 A wing is tested in a wind tunnel at a speed of 10m/s. The pressure in the wind
tunnel is atmospheric. Find the gauge pressure at the stagnation point if the air density
p = 1.2kg/m?. What is the static (gauge) pressure at the point where the velocity on the
wing is 15m/s? What assumptions did you make?

4.14 A wind tunnel carrying air of density p has two pressure taps in its walls to measure
the static pressure, as shown in Figure P4.14. One tap is located upstream of the contraction
where the cross-sectional area is Ay, the velocity is Vi, and the pressure is p1, and the other
tap is located in the working section where the area is As, the velocity is V5 and the pressure
is po. If A3 > A, find V5 in terms of p, p; and ps. Show your working and state all your
assumptions.

4.15  An airplane is moving at a speed of 250 mph at an elevation of 12,000 ft. By using
Bernoulli’s equation, find the pressure at the stagnation point, and at a point on the upper
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surface of the wing where the local velocity is 350 mph. Assume a Standard Atmosphere
(Table Appendix-C.6).

4.16  An airplane is moving through still air at 60m/s. At some point on the wing, the
air pressure is —1200 N/m? gauge. If the density of air is 0.8 kg/m?, find the velocity of the
flow at this point. Carefully list the assumptions you have made in your analysis. Express
your answer in terms of the nondimensional pressure coefficient C.

4.17  Water flows steadily at a rate of 0.6 ft3/s through a horizontal cone-shaped contrac-
tion the diameter of which decreases from 4.0 in. to 3.0 in. over a length of 1.2 ft. Assuming
that conditions are uniform over any cross section, find the rate of change of pressure with
distance in the direction of the flow at the section 0.6 ft from the end of the contraction.

4.18  Consider the steady flow of air with no losses through the circular duct shown in
Figure P4.18. The air has constant density p, and the duct exits to atmospheric pressure.
Assume one-dimensional flow.

(a) Find p14, the gauge pressure at station 1, in terms of p and V;.

(b) Find the direction of the force F that is necessary to hold the duct in place.

4.19 A one-dimensional air flow of constant density p exits steadily into the ambient
atmosphere from the contraction shown in Figure P4.19. The contraction is bolted onto a
constant area duct at station 1, and the area ratio A;/As = 4. If the total force in the bolts
is F, find F,/pU2A;. Show all your work, and state your assumptions clearly. Would your
analysis hold if the flow direction was reversed?

4.20  Neglecting friction, find the axial force produced at the flange when water discharges
at at 200 gpm into atmospheric pressure from the circular nozzle shown in Figure P4.20.

4.21  Air of constant density p flows steadily through the circular pipe of radius R with
no losses at a velocity V, as shown in Figure P4.21. Find the vector force F, exerted at the
flange required to hold the pipe in place, in terms of p, R, V, and the angle of the bend 6.
Ignore gravity. For this problem, the nozzle is not attached to the exit.
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4.22 A nozzle with an exit radius of %R is attached to the exit of the pipe bend described
in the previous problem. Find the new vector force F’/, exerted at the flange required to
hold the pipe in place, in terms of p, R, V', and the angle of the bend 6. Ignore gravity, and
neglect losses.

4.23  Air of constant density p flows steadily through the horizontal pipe system shown
in Figure P4.23. The air flow exits to atmosphere through a 4:1 contraction. Assume one-
dimensional flow, neglect losses, and neglect the weight of the piping.

(a) Find the gauge pressure measured by the gauge near station 1 in terms of p and V.
(b) Find the resultant force acting in the flange bolts at station 1.

4.24 An incompressible fluid of density p flows smoothly and steadily from left to right
through the nozzle shown in Figure P4.24(a). The pressure outside the nozzle is equal to
atmospheric pressure, and the flow may be assumed to be one-dimensional. Determine the
magnitude and the direction of the force exerted by the fluid on the nozzle in terms of the
density p, the inlet velocity V7, and the inlet area A, given that the pressures and velocities
at stations 1 and 2 are uniform across the areas Ay and As, and that A;/As = 4.

4.25  Consider the previous problem in the case where the flow is from right to left
[Figure P4.25(b)]. What additional information (beyond the density p, the inlet velocity V7,
and the inlet area A1) would you require to determine the force exerted by the fluid on the
nozzle with this new flow direction?
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4.26  Water in an open cylindrical tank 10 ft in diameter and 6 ft deep drains through
a 2in diameter nozzle in the bottom of the tank. Neglecting friction and the unsteadiness
of the flow, find the volume of water discharged in 20 s, given that the pressure at the exit
is atmospheric. Assume (a) the depth of the tank is kept constant, and (b) the depth is
allowed to change with time as the tank drains.

4.27  Water flows into a large circular tank at a rate of ¢m?/s that is open to the
atmosphere. Water also leaves through a smooth circular nozzle of diameter d a distance h
below the free surface. Determine the height h for the flow to be independent of time.

4.28 A tube of constant cross-sectional area A is used to siphon water of density p from
a large open tank to a point a distance H below the water level in the tank.

(i) Find the maximum volume flow rate in terms of p, g and H.

(ii) Find the dynamic pressure at the exit. Show your working and state all your as-
sumptions.

4.29 A siphon is used to empty a large tank. The exit of the siphon is located a distance
h below the surface of the water, and points up at an angle 6 to the horizontal. The water
is allowed to stream out of the exit without loss. Find the maximum vertical distance the
water reaches.

4.30  Given the siphon arrangement shown in Figure P4.30, find the exit velocity of the
siphon assuming no losses. What limit exists on the maximum value of L if the siphon is to
continue to function? What limit exists on the value of H?

4.31  Water exits from a reservoir as shown in Figure P4.31. As H increases, the exit
velocity increases until a critical elevation is reached and cavitation occurs. Find this value
of H. Assume uniform flow and no losses, and that the vapor pressure is 0.25 psia.
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4.32 A tube of constant area A; is used as a siphon, and it draws fluid of constant density
p without loss from an infinitely large reservoir, as shown in Figure P4.32. The fluid exits
with velocity V., at an angle 6 to the horizontal, at a distance H; below the surface of the
reservoir.

(a) Explain what the practical restrictions are on the maximum height of the siphon tube,
Hs.

(b) Express the ratio of the cross-sectional area of the jet to the cross-sectional area of the
tube as a function of H; and height y.

(¢) Find Hj, the maximum height reached by the jet, as a function of H; and 6.

(d) Find the volume of water contained in the jet between stations A and B.

4.33  Water leaves a small hole in the vertical side of a bucket in a continuous, initially
horizontal jet.

(a) If the head of water above the hole is 1.25m, what is the jet velocity at exit?

(b) If an observer sees that the jet strikes the ground at a point situated 2.21 m horizontally
from the hole, and the ground is 1m below the hole, recalculate the jet velocity at exit.
Why might this result be different from that obtained in part (a)?

4.34  Water flows from a large open reservoir and discharges into air at atmospheric
pressure through a circular, horizontal pipe fitted with a nozzle, as shown in Figure P4.34.
Subsequently, it strikes the ground a distance = downstream from the nozzle. Neglecting
losses, find

(a) The velocity at the nozzle exit;

(b) The velocity and pressure in the pipe near the nozzle;

(c¢) The distance x.
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4.35 A jet issues without loss from a hole in a water tank that is open to the atmosphere.
The hole is located a distance H below the free surface, and the jet issues at an angle 6 to
the horizontal direction, and it has an exit area of A. Express the maximum height of the
jet as a function of @ and H (which is held constant). What is the the horizontal component
of the force exerted on the tank by the jet? Ignore losses.

4.36 A jet of constant density fluid rises into the atmosphere, without loss, from the
bottom of a large tank, as shown in Figure P4.36.

(a) Find the exit velocity V in terms of g and H. State all assumptions clearly.

(b) Find the horizontal component of the force the jet exerts on the tank in terms of p, Vi,
0 and the exit area A.

(c) As the jet rises, its vertical velocity decreases but its horizontal velocity remains constant.
Find the maximum height of the jet in terms of H and 6.

4.37 A jet of constant density fluid rises without loss into the atmosphere at an angle 6
from a large tank, as shown in Figure P4.37. The exit is located very near the bottom, and
the change in water depth H with time may be neglected.

(a) What is the maximum height, relative to the tank bottom, to which the jet rises?

(b) What is the vertical force F' required to support the tank? Neglect the weight of the
tank.

4.38 A large tank issues a jet of water from an orifice at a depth H below the surface,
as shown in Figure P4.38. The orifice has an exit area A, and it points upwards at an angle
of 6 to the horizontal. Assuming that A; > As, and that there are no losses,

(a) Find the maximum height of the jet (= H3) in terms of Hy and 6.

(b) Find the volume of water in flight between the jet exit and the point of maximum jet
height in terms of Ao, Hy and 6.
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4.39  Water of density p issues from a spigot of circular cross-section into the atmosphere,
as shown in Figure P4.39. At the flange, the velocity is V. The diameter decreases from D
at the flange to iD at the exit. Ignoring losses,

(a) Find the gauge pressure at the flange in terms of p and V.

(b) Find the magnitude and direction of the force exerted by the water on the spigot in
terms of p, D and V (ignore the weight of water contained in the spigot).

4.40  For a constant density fluid flowing in a duct, show that the change in total pressure
(= static pressure + dynamic pressure) after a sudden enlargement is

2
1 U,
ZoU? (1= =22
Qp 1 < Ul)
where Uj is the velocity upstream, and Us the velocity well downstream of the sudden
change in the cross-section. Note that at the point where the fluid enters the enlargement,
the streamlines are nearly parallel. Explain why the velocity Us must be taken to be well

downstream of the sudden enlargement and support your explanation with a sketch of the
flow pattern.

4.41  Consider the steady flow of a fluid of constant density in a duct of constant width
w. The fluid flows smoothly up a bump, as shown in Figure P4.41, and then separates such
that the streamlines are initially straight and parallel. Determine the magnitude and the
direction of the horizontal component of the force exerted by the fluid on the bump in terms
of the density p, the inlet velocity V7, the inlet height H; and the width w, given that the
pressures and velocities at stations 1 and 2 are uniform across the heights H; and Hs, and
that Hl/HQ =2.

4.42 A fluid of density p; flows through a circular nozzle as shown in Figure P4.42. The
pressure difference between sections 1 and 2 is measured using a manometer filled with a
liquid of density ps. Find the pressure difference p; — p2 and the area ratio A;/As in terms
of z1 — 29, D, p1, p2, and V7.

4.43  Air of constant density p, flows steadily through a circular pipe of diameter D,
which is downstream of a frictionless nozzle of diameter d, as shown in Figure P4.43. Assume
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one-dimensional flow. If the manometer reads a deflection of h, find the velocity V at the
nozzle exit in terms of h, D, d, p, and the density of the manometer fluid p,,.

4.44 A fluid flows steadily from left to right through the duct shown in Figure P4.44.
Another fluid of a different density enters from a second duct at right angles to the first. The
two fluids mix together and at station 3 the resultant fluid has a uniform composition. This
mixed fluid then exits without loss to atmosphere through a contraction with no further
change in density. At stations 1, 2, 3 and 4 the flow properties and parameters are constant
over their respective areas. Find the pressure p; in terms of p;, A; and U;. Ignore the
effect (1)f gravity. Assume U, = 2Uy, p2 = 3p1, p3 = 2p1, p3 = pa, As = iAh A = Az, and
Ay = ;A1

4.45 Two gases of density p; and p3 are being mixed in the device shown in Figure P4.45.
The device is of height d and constant width. Gas of density p; and velocity Uy enters from
the left, and it is mixed with gas of density p3 and velocity Us entering through two ducts

Air at
e po, Ay, Us atmospheric
: pressure

Figure P4.44
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Figure P4.46

each of size id. The mixing is complete at station 2, so that both the velocity Us and
density ps are uniform across the duct. The mixture then accelerates smoothly through a
contraction to exit at atmospheric pressure with a velocity Uy and an unchanged density
(ps = p2). You are given that p3 = 2p;, and Us = 3U; = Uy. Find the ratio pa/p1, and the
pressure coefficient C),, where

P1— P2
C. =
P ipu?

4.46  Water issues steadily without loss from the smooth, circular funnel shown in Fig-
ure P4.46 under the action of gravity.

(a) Find the area ratio As/Ay in terms of h; and ho.

(b) By using the momentum equation, find the volume of fluid contained in the jet between
stations 2 and 3 in terms of hq, ho and As. Assume that A, > As.

4.47 A circular hovercraft, of weight M g, hovers a distance h above the ground, as shown
in Figure P4.47. Far from the inlet the air is at atmospheric pressure and may be considered
stationary. The air density remains constant throughout. The expansion downstream of the
fan occurs without loss, and the exit streamlines are parallel to the ground. Find A in terms
of the inlet velocity V;, the diameter of the fan d, the diameter of the exit plane D, the
density p and the weight Mg. Assume one-dimensional flow over the entry and exit areas.
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4.48  An axisymmetric body of cross-sectional area a moves steadily down a tube of cross-
sectional area A, which is filled with a fluid of constant density p, as shown in Figure P4.48.
The flow over the main part of the body is streamlined, but the flow separates over the rear
part of the body such that the pressure over the section z-r immediately downstream of the
base is uniform. Neglecting viscous shear forces at the wall, show that the velocity of the

body is given by
A—a 2F
=)

where F' is the force necessary to keep the body moving at a constant speed.

4.49  Air flows steadily through a tee-piece of width w, as shown in Figure P4.49. Gravity
is not important, and the air density p is constant. The flow exits to atmospheric pressure
Pa- If the resultant force acting on the tee-piece is zero:

(a) Find the ratios V2/V; and V3/V; (these are numbers).

(b) find the gauge pressure p;, at the flange in terms of p, V1, h, and w.

4.50 A duct carries a steady flow of air of constant density p and exits to atmosphere,
as shown in Figure P4.50. At its entrance the gauge pressure is pg, the velocity is V, and
the area is A. At its exit the area is A/2. Assume one-dimensional, frictionless flow, and
ignore gravity.

(a) Find the velocity at the exit in terms of V.

(b) Find p, in terms of p and V.

(c) Find the magnitude and direction of the force required to hold the duct in place.

Show your control volumes and all your working clearly, state all your assumptions, and
indicate your coordinate system.

4.51 A steady flow of air of constant density p is drawn into a duct of constant width w
and height 2h, as shown in Figure P4.51. Viscous effects and energy losses are important
only downstream of point 1. The effects of gravity can be neglected. For the velocity
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distributions and pressures given in the figure:
(a) Show that the pressure py = 10pV2, given that ps = 0.75pg, and p; — py = 2pV2.
(b) Show that the velocity Vo = 3V;/2.
(c) Show that
F 26

1oV2hw 5
where F' is the horizontal component of the force required to hold the duct (including the

contraction) in place at point 2.

4.52 A water deflector is held onto a pipe of area A; at a flange. The deflector has two
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exits, as shown in Figure P4.52, which exit to atmospheric pressure. The flow is steady,
one-dimensional, and the water has a constant density p. With both exits open, velocity
Vo = V1, and area Ay = A1 /2. Ignore the effects of gravity. Show your control volumes and
all your working clearly, state all your assumptions, and indicate your coordinate system.
(a) Find the velocity V3 in terms of Vi, given that Az = A;.

(b) Find the magnitude and direction of the z-component of the force at the flange (station
1) required to hold the deflector onto the pipe, in terms of Vi, A1, p, v, and p14 (the gauge
pressure at station 1).

(c) Similarly, find the magnitude and direction of the y-component of the force at the flange
required to hold the deflector onto the pipe.

(d) If the exit at station 3 was closed, find p14 in terms of V4 and p. Ignore losses.

4.53 A flange connects a pipe section of inlet area A;, as shown in Figure P4.53. The
pipe section reduces its area smoothly, and the air flow exits to atmospheric pressure though
an area As. The exiting jet impacts a baffle placed normal to the incoming flow. The flow
is steady, one-dimensional, and the air has a constant density p. The gauge pressure at
station 1 is pi4. Ignore the effects of gravity. Show your control volumes and all your
working clearly, state all your assumptions, and indicate your coordinate system.

(a) Find the magnitude and direction of the force Fy, required to hold the baffle in place in
terms of p, Vi, Ay, and As.

(b) Find pi14 in terms of p, V1, A1, and A,. Ignore losses.

(c) Find the magnitude and direction of the z-component of the force at the flange (station
1) required to hold the pipe section in place, in terms of p, V1, A, A, and «.

(d) Similarly, find the magnitude and direction of the y-component of the force at the flange
required to hold the pipe section in place, in terms of p, Vi, Ay, Ay, and a.

4.54 A flange connects a pipe section of inlet area A, as shown in Figure P4.54. The pipe
section splits smoothly into two separate streams that both exit to atmospheric pressure
though areas A/4. The flow is steady, one-dimensional, and the air has a constant density
p. The gauge pressure at station 1 is p14. Ignore the effects of gravity. Show your control
volumes and all your working clearly, and state all your assumptions.

(a) Find p14 in terms of p and V;. Ignore losses.

(b) Find the magnitude and direction of the x-component of the force at the flange (station
1) required to hold the pipe section in place, in terms of p, V7, A, and 6.

(c) Similarly, find the magnitude and direction of the y-component of the force at the flange
required to hold the pipe section in place, in terms of p, Vi, A, and 6.
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Figure P4.53

Figure P4.54

4.55 A spray head steadily discharges a fluid of constant density p symmetrically over
two side branches, as shown in Figure P4.55. You can neglect gravity, and the fluid viscosity.
(a) Find p14, the gauge pressure at station 1, in terms of p, Vi, A; and A,.

(b) Find the resultant force (magnitude and direction) required to hold the spray head onto
the duct, in terms of p, 6, Vi, A1 and As.

(c) Express the answer to part (b) as a non-dimensional force coefficient.
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Figure P4.55
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Chapter 5

Differential Equations of Motion

5.1

Study Guide

State the definition of the total derivative. Define all symbols and notations, and
describe the meaning of all terms in words.

Write down the xz-component of the acceleration following a fluid particle given that
V = ui + vj + wk, where V is the velocity and i, j and k are the unit vectors in a
Cartesian coordinate system.

State the continuity equation in differential form. Define all symbols and notations,
and describe the meaning of all terms in words.

Write down the vector differential form of the momentum equation for an inviscid,
incompressible fluid. Define all symbols and notations, and describe the meaning of
all terms in words.

When is a flow steady? Incompressible?

Write down the integral and differential forms of the continuity equation for:
(a) Steady flow.
(b) Constant density flow.

5.2 Worked Examples

Example 5.1: Streamlines and pathlines in steady flow

Consider the flow field given by

V = zi— yj

This flow is steady (independent of time) and two-dimensional (it depends on two space
coordinates, x and y).

(a) Describe the velocity field.

(b) Find the shape of the streamlines.

(¢) Find the shape of the pathlines.

Solution: For part (a), the vector velocity makes an angle 6 with the z-axis, so that

v
tanf = — =_9
U T
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Along the z-axis, y = 0, and # = 0° (or 180°), and V has the same sign and magnitude
as x, so that the velocity points directly along the z-axis and increases in magnitude with
distance from the origin. Along the y-axis, x = 0, and 6 = 90° (or 270°). Here, V has the
opposite sign but the same magnitude as y, so that the velocity points along the negative
y-axis and increases in magnitude with distance from the origin. At y = x, § = —45°, and
so forth. Hence, the entire velocity field can be built up by successively finding the velocity
direction and magnitude at all points in the flow. This procedure will show that the flow
field represents a stagnation point flow, as illustrated in Figure 4.8.
For part (b), the shape of the streamlines is given by the solution of:
dy v Y

dr u T

The variables can be separated and integrated to give

dy _ [de
y T
That is
Iny = —Inz + constant
This can be written as
zy=C

where C is a constant. That is, the streamlines are hyperbolae in the x-y plane (see Fig-
ure 4.8).
For part (c¢), we can find the pathlines by using:

u—d—x—x and U_dy__
“a “at Y
That is,
dr _ dy
oy

Multiplying through by xy gives
ydr +xdy=d(zy) =0
The equation to the pathline is then
zy = C

the same result obtained for the equation to the streamline. This is expected, since stream-
lines and pathlines are identical in steady flow.

Example 5.2: Streamlines and pathlines in unsteady flow

Consider the flow field given by
V = zi+ ytj

This flow is unsteady (it depends on time) and two-dimensional (it depends on two space
coordinates,  and y). Find the shape of

(a) The streamline and;

(b) The pathline passing through the point [1,1] at time ¢ = 0.

Solution: For part (a), the shape of the streamlines is given by the solution of

dy vyt

dzx U T
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The variables can be separated and integrated to give
Iny = tlnx 4 constant
This can be written as
y = Crat
where C] is a constant. For the streamline passing through the point [1,1] at t =0, C; = 1,

so for this particular streamline,
y=a' (5.1)
For part (b), to find the pathlines, we use the fact that v = dx/dt, and v = dy/dt. For
this problem,

dx dy
— =u, d ==yt
at ~ M Y
Integration gives
x = Chet
and y = Cs et’/2

where Cy and Cj are constants. For the particle located at the point [1,1] at ¢ = 0,
Cy = C3 =1, so for this particular pathline

t

x = e
and Yy = el /2
Eliminating time gives
2Iny = (Inz)? (5.2)

Note that the results given in Equations 5.1 and 5.2 are different because in an unsteady
flow streamlines and pathlines do not coincide.

Example 5.3: Rate of change of density

Given the Eulerian, Cartesian velocity field V = 3i 4 2zj, and a density field described by
p = 412, find the rate of change of density following a fluid particle.

Solution: We need to find the total derivative of the density, that is,

Dy _ o o0, 00, 00
Dt 8t+u8x+vay+waz

For these particular velocity and density fields, w = 0, and

— =0
ot
dp 04y?
— =3 0
Yor or
0 04yy?
Ua—z =2z 8y = 16zy
Therefore,
D
P 162y
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Example 5.4: Acceleration of a fluid particle

Given the Eulerian, Cartesian velocity field V = 2ti + z2zj — t?yk, find the acceleration
following a fluid particle.
Solution: We need to find the total derivative of the velocity, that is,

DV 9V 9V 9V 9V
= U v tw

Dt ot or oy 9z
For this particular velocity field,
ov a(2t), O(zz), O(—t%y)
Z - = k =2 — 2tyk
o ot T T a tr0-2ty
ov. o(2t), O ) o
ug- = 2t[8x i+ o k 2t[0+ 2j — 0] = 2tzj
vaa—z = xz {aéy)ﬂr (8 2); (8 )k} = l’Z[O‘FO*tk] = —zzt’k
ov. , [0(2t), O(xz), O(—t%y) 9 ) B 5,
was = t [82 i+ 5% i+ % k| = —t*y[0+2j—0] = —zyt’j
Finally,
DV
Dr = 2i — 2tyk + 2tzj — x2t’k — xyt?j = 2i+ (Qtz - a:th)j — (Zty + xth) k

Example 5.5: Incompressibility

Determine if the Eulerian velocity field V = 2zi + ¢2j is incompressible.

Solution: A velocity field is incompressible if V -V = 0. For the Cartesian velocity field
given here,

Cu dv dw  92)  A)
VoV = oy e T o oy 2

and the flow field is therefore not incompressible.

Example 5.6: Euler equation

Find the z-component of the acceleration of an inviscid fluid under the action of a pressure
gradient Vp = 22%i + 2zj. The 2-direction is horizontal.

Solution: The flow of an inviscid fluid is described by the Euler equation (equation 5.10).
That is,

DV
T —Vp+pg
We take the z-component by forming the dot product with the unit vector i, so that
p% =—i-Vp+i-pg
That is,
Du  10p
Dt pox

Hence, for the flow field given here, the z-component of the acceleration is

Du 1 022 2x

Dt p Ox _?
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Example 5.7: Navier-Stokes equation

Consider the steady flow of a viscous fluid in a long horizontal duct of height 2h, where
V = (1 — (y/h)2) i. Find the corresponding pressure gradient.

Solution: The flow of a viscous fluid is described by the Navier-Stokes equation (equa-
tion 5.19). That is,
DV

Dt

The acceleration for this particular flow is given by

o (1)

Since the channel is horizontal, the Navier-Stokes equation reduces to

= —Vp+pg+puv?V

0=—Vp+uV*Vv

The viscous term becomes

2 _ 2(1 (Y 2
;NV_,N<1 (h)>1
0? 0? 0? Y\ 2 20
- “<a2 8y2+822)<(h)> - et
and therefore 5
Vp = —h—/;i

The pressure gradient acts only in the z-direction, so that

9 _dp _ 2p

dr  dr B2
and we see that the pressure drops linearly in the streamwise direction. This is an example
of a fully-developed flow where the velocity profile does not change in the flow direction,
and the acceleration term goes to zero. Other examples of fully-developed flows will be
considered in Chapter 8.

Example 5.8: Eulerian velocity field

An Eulerian, Cartesian velocity field is given by V = az?i — 2axyj.
(a) Is it one-, two-, or three-dimensional?

(b) Is it steady or unsteady?

(c) Is it incompressible?

(d) Find the slope of the streamline passing through the point [1, —1].

Solution: For parts (a) and (b), we see that the velocity field is described by two space
coordinates (z and y), and it does not depend on time, so that it is two-dimensional and
steady.

For part (c), we have

_Ou  Ov d(ax?®)  O(—2axy) B _
V'Via—'_@iyi 5 + 9y = 2ax —2ax = 0

so the flow field is incompressible.



106 PROBLEMS Chapter 5

For part (d), we know from the definition of a streamline that its slope in the [z, y]-plane
is given by the angle «, where

v —2axy —2y
tana = — = = — =
U

5 2

axr xT

Therefore, at the point [1, —1] the streamline makes an angle of 63.4° with the z-axis.

Problems

5.1 For a velocity field described by V = 222i — zyk, is the flow two- or three-
dimensional? Incompressible?

5.2 For an Eulerian flow field described by u = 2zyt, v = y3z/3, w = 0, find the slope
of the streamline passing through the point [2,4] at ¢ = 2.

5.3 Find the angle the streamline makes with the z-axis at the point [-1, 0.5] for the
velocity field described by V = —ayi + 2y%j

5.4 A Cartesian velocity field is defined by V = 2zi + 5yz2j — t°k. Find the divergence
of the velocity field. Why is this an important quantity in fluid mechanics?

5.5 Is the flow field V = zi and p = x physically realizable?

6 For the flow field given in Cartesian coordinates by u = y?, v = 2z, w = yt:
) Is the flow one-, two-, or three-dimensional?

) What is the z-component of the acceleration following a fluid particle?

c) What is the angle the streamline makes in the z-y plane at the point y =z =17

5.7 For an Eulerian flow field described by u = 2xyt, v = y%x/3, w = 0:
(a) Find the rate of change of density following a fluid particle as a function of z, y and t.
(b) Find the x-component of the acceleration as a function of z, y and ¢.

.8 A velocity field is described (in Cartesian coordinates) by u = 2—x3/3, v = 2%y —2t,
=0.

a) Write down the y-component of the acceleration of a fluid particle (in the Eulerian
ystem) for this flow field.

(b) Is this flow field incompressible?

ISES

wn o~

5.9 For the velocity field given by V = 6xi — 2yzj + 3k, determine where the flow field
is incompressible.

5.10  Consider the following velocity field (in Cartesian coordinates): u = xt + 2y, v =
xt? — yt, w = 0. Is this flow incompressible?

5.11  Is the flow field

V= (22 —ay+2)i+ (2 —day +y?) j+ (—22y —yz + ) k
compressible or incompressible?
5.12 A flow field is described in Cartesian coordinates by

V = (22" +62%2) i+ (y° —4ay)j — (22° + 2y2) k
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Figure P5.16

Is it incompressible?

5.13 A flow field is described (in Cartesian coordinates) by

4 2 ¢
u:—m7 v:y—7 w =0, p=3+—
x

Find the rate of change of density following a fluid particle two different ways. Is this flow
field possible?

5.14  For an Eulerian flow field described by u = 2z, v = 16 (y + 2), w = 0, p = at® + zy,
find the rate of change of density of a particle of fluid with respect to time ¢ in two different
ways. Is this flow field possible?

5.15  For an Eulerian flow field described by u = 22t, v = y?2/2, w = 0,

(a) How many dimensions does the flow field have?

(b) Find the rate of change of density (per unit mass) following a fluid particle as a function
of z, y and t.

(c) Find the z-component of the acceleration as a function of z, y and ¢.

5.16 In Cartesian coordinates, a particular velocity field is defined by V = —2z2i +
4zyj + 3k.

(a) Is this flow field compressible or incompressible?

(b) Find the acceleration of the fluid at the point (1,3,0)

(c) Find the volume flux passing through area A shown in Figure P5.16.

(d) What are the dimensions of volume flux?

.17 For the Cartesian velocity field V = 2z2yi + 3j + 4yk:

5.18 A Cartesian velocity field is defined by V = 322i + 4zxtk.
(a) Is the flow field steady?

(b) Is the flow field two- or three-dimensional?

(c) Find the rate of change of velocity following a fluid particle.
(d) Is the flow field incompressible?

5.19  For an Eulerian flow field described by u = 2zyt, v = y>z/3, w = 0:
a) Is this flow one-, two-, or three-dimensional?

b) Is this flow steady?

c) Is this flow incompressible?

d) Find the z-component of the acceleration vector.

(
(
(
(
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5.20  For the flow field described by V = 2zyi — 332j.

a) Is the flow field incompressible?

b) Is the flow field steady?

c) Is the flow field two- or three-dimensional?

d) Find the angle the streamline makes that passes through the point (3, —2).
e) Find the acceleration of the flow field.

5.21  For the flow field described by u = 2, v = y2%t, w = —2%t/3.
) Is this flow one-, two-, or three-dimensional?
) Is this flow steady?

) Is this flow incompressible?

) Find the z-component of the acceleration vector.

.22 For an Eulerian flow field described by v = zyz, v = t?, w = 3:
) Is this flow one-, two-, or three-dimensional?
) Is this flow steady?

) Is this flow incompressible?

) Find the z-component of the acceleration vector.

.23 A velocity field is described by V = 2zyzi — y2zj.
) Is the flow field one-, two- or three-dimensional?
) Is the flow field steady?

) Find the acceleration at the point [1,—1,1].

) Find the slope of the streamline passing through the point [1,—1,1].

.24 An Eulerian flow field is described in Cartesian coordinates by V = 4i+xzj+5y3tk.
) Is it compressible?

) Is it steady?

) Is the flow one-, two- or three-dimensional?

) Find the y-component of the acceleration.

e) Find the y-component of the pressure gradient if the fluid is inviscid and gravity can be
neglected.

5.25  For the flow field described by u =2 — 23/3, v = 2%y — zt, w = 0.
(a) Is this flow two- or three-dimensional?

(b) Write down the xz-component of the acceleration.

(c) Is this flow field incompressible?

5. 2

(a
(b
(

26 A fluid flow is described (in Cartesian coordinates) by u = %, v = 4xz.
) Is this flow two-dimensional or three-dimensional?

) Is this flow field steady or unsteady?

)

¢) Find the simplest form of the z-component of velocity if the flow is incompressible.

5.27  For the flow field given in Cartesian coordinates by u = 0,v = 2%z, w = 2°:

2
(a) Is the flow compressible?
(b) What is the y-component of the acceleration following a fluid particle?

5.28  An Eulerian velocity field in Cartesian coordinates is given by u = 2%y, v = —zy?,
w = 2xy.

) Is the flow field two- or three-dimensional?

) Is this flow field compressible or incompressible?

c) Is this flow field rotational or irrotational?

5.29  For the flow field given in Cartesian coordinates by u = 2zt +y, v = —2yt, w = O:
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(a) Is the flow one-, two- or three-dimensional?

(b) Is the flow steady?

(c) Is the flow compressible?

(d) What is the vector acceleration following a fluid particle?

5.30 A fluid flow is described in Cartesian coordinates by u = 2zyz, v = —y?z, w = 0.
(a) Is the flow field two- or three-dimensional?

(b) Is this flow field compressible or incompressible?

(c) What is the a-component of the acceleration?

(d) What is the angle a streamline makes in the z-y plane at the point [1,1].

5.31  An Eulerian velocity field in Cartesian coordinates is given by u = 2y — 3z, v =
3y + 2xz, w=0:

Is the flow one-, two- or three-dimensional?

Is the flow steady?

Is the flow compressible or incompressible?

What is the vector acceleration following a fluid particle?

e) If viscous and gravitational forces are negligible, use the Navier-Stokes equation to find
he pressure gradient vector.

y
(a)
(b)
()
(d)
(
t

5.32  An Eulerian velocity field in Cartesian coordinates is given by u = x, v = —2y,
w = z.

(a) Is the flow field two- or three-dimensional?

(b) Is this flow field compressible or incompressible?

(c) Find the rate of change of velocity following a fluid particle.

5.33  For the Eulerian flow field given in Cartesian coordinates by u = 3ydzz, v = 0,
w = 22%

(a) Is the flow one-, two- or three-dimensional?

(b) Is the flow steady?

(¢) Is the flow compressible or incompressible?

(d) What is the y-component of the acceleration following a fluid particle?

(e) Find the viscous force per unit volume (= uV?V).

5.34  An Eulerian velocity field in Cartesian coordinates is given by u = ax?y, v = bxy?,
w = TYZ.

(a) Is the flow field two- or three-dimensional?

(b) Find values for a and b for which the flow field is incompressible.

(c) Find the rate of change of the y-component of velocity following a fluid particle.

2 3

5.35  For the Eulerian flow field given in Cartesian coordinates by u = —2z°, v = 22z°,
w = 4dxz:

(a) Is the flow one-, two- or three-dimensional?

(b) Is the flow steady?

(c) Is the flow compressible or incompressible?

(d) What is the rate of change of velocity following a fluid particle?

(e) If this flow is inviscid, and gravity is not important, find Vp as a function of [z,z].
5.36  An Eulerian velocity vector field is described by V = 2zi — y?jm/s, where i and j
are unit vectors in the x- and y-directions, respectively.

(a) Find the angle the streamline makes at the point (1,1).

(b) Find the equation describing the streamline passing through the point (1,1).

(c) If the flow is inviscid and has constant density, find the change in pressure between
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points (1,1) and (e,2), where e = 2.71828... Ignore gravity, and use p = 1.2 kg/m?.

5.37  An Eulerian velocity vector field is described by V = 2zi — y2j — 3k, where i, j and
k are unit vectors in the x-, y- and z-directions, respectively.

(a) Is the flow one-, two- or three-dimensional?

(b) Is the flow compressible or incompressible?

(c) Does the the density field p = 2x/y satisfy the continuity equation?

(d) What is the acceleration following a fluid particle?

5.38  An Eulerian velocity vector field is described by V = 2i + yz%tj — %tk, where i, j
and k are unit vectors in the z-, y- and z-directions, respectively.

(a) Is this flow one-, two-, or three-dimensional?

(b) Is this flow steady?

(c) Is the flow incompressible or compressible?

(d) Find the z-component of the acceleration vector.

5.39  An Eulerian velocity vector field is described by V = 22%yi — 2zy%j — 4xyk, where
, j and k are unit vectors in the z-, y- and z-directions, respectively.

) Is the flow one-, two- or three-dimensional?

) Is the flow compressible or incompressible?

) What is the z-component of the acceleration following a fluid particle?

)

i

(a

(b

(c

(d) Bonus question: Is the flow irrotational?

5.40  An Eulerian velocity vector field is described by V = i+ 2zj — 322k, where i, j and
k are unit vectors in the x-, y- and z-directions, respectively.

(a) Is the flow incompressible or compressible?

(b) Find the rate of change of velocity following a fluid particle.

(¢) Find the viscous force per unit volume (that is, the viscous term in the Navier-Stokes
equation).

5.41  An Eulerian velocity vector field is described by V = 3zzj + yk, where i, j and k
are unit vectors in the x-, y- and z-directions, respectively.

(a) Is the flow one-, two- or three-dimensional?

(b) Is the flow compressible or incompressible?

(c) What is the acceleration following a fluid particle?

(d) If gravity and viscous forces can be neglected, what is the pressure gradient?

5.42  An Eulerian velocity vector field is described by V = 2yi — 322j + t?k, where i, j
and k are unit vectors in the z-, y- and z-directions, respectively.

(a) Is this flow one-, two-, or three-dimensional?

(b) Is this flow steady?

(c) Is the flow incompressible or compressible?

(d) Find the az-component of the acceleration vector.

(e) Find the z-component of the vorticity vector.

5.43  For a two-dimensional, incompressible flow, the xz-component of velocity is given
by v = 2y?. Find the simplest y-component of the velocity that will satisfy the continuity
equation.

5.44  Find the y-component of velocity of an incompressible two-dimensional flow if the
x-component is given by u = 15 — 2zy. Along the z-axis, v = 0.

5.45 A two-dimensional flow field has an z-component of velocity given in Cartesian
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coordinates by u = 2x — 3y.

(a) Find v, the y-component of velocity, if the flow is incompressible and v = 0 when z = 0.
(b) If the flow follows the Bernoulli equation, find an expression for the pressure distribution
as a function of x and y, given that the pressure is py at the stagnation point.

5.46  The velocity in a one-dimensional compressible flow is given by u = 1022. Find the
most general variation of the density with x.

5.47  The z-, y- and z-components of a velocity field are given by v = az + by + cz,
v=dx+ey+ fz, and w = gr + hy + jz. Find the relationship among the coefficients a
through j if the flow field is incompressible.

5.48  For a flow in the zy-plane, the y-component of velocity is given by v = y? — 2z + 2y.
Find a possible z-component for steady, incompressible flow. Is it also valid for unsteady,
incompressible flow? Why?

5.49  The z-component of velocity in a steady, incompressible flow field in the zy-plane
is u = A/z. Find the simplest y-component of velocity for this flow field.

5.50  The flow of an incompressible fluid in cylindrical coordinates is given by

4\ | 1
up=|1+— |sinf— -
r r

Find u, if u, =0 at r = 2 for all #. The flow does not depend on z.

5.51  An air bearing is constructed from a circular disk that issues air from many small
holes in its lower surface. The average velocity through the bearing is .

(a) Find an expression for the radial velocity under the bearing, assuming that the flow is
uniform, steady and incompressible.

(b) The bearing floats 1.5mm above the table and the air flows through the bearing with
an average velocity of v = 2m/s. If the bearing is 1m in diameter, find the magnitude and
location of the maximum radial acceleration experienced by a fluid particle in the gap.

5.52  Show that the velocity distribution in the linear Couette flow illustrated in Fig-
ure 1.14 is an exact solution to the incompressible Navier-Stokes equation (the pressure is
constant everywhere). Find all the components of the viscous stress for this flow.
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Chapter 6

Irrotational, Incompressible
Flows

6.1 Study Guide

For an irrotational flow field:

e The flow can be described completely by the scalar velocity potential ¢, instead of the
vector velocity V.

e The function ¢ can be found by solving Laplace’s equation, VZ¢ = 0.

e Laplace’s equation is a linear equation, so that solutions for complex flow fields can
be constructed from the linear addition of the solutions for simpler flow fields.

e The velocity field can be found by taking the gradient of the velocity potential, that
is, V.=Vo.

e The pressure can be found using Bernoulli’s equation, as long as the flow is also
incompressible and steady.

For a two-dimensional, incompressible flow field:

e The flow can be described completely by the scalar stream function 1), instead of the
vector velocity V.

e Lines of constant 1 are streamlines.
o If the flow is also irrotational, the function ¢ can be found by solving Laplace’s equa-

tion, V29 = 0.

6.2 Worked Examples

Example 6.1: Stream functions and velocity potentials

Show that ¢ = 23 —3zy? is a valid velocity potential, and that it describes an incompressible
flow field. Determine the corresponding stream function. Find the stagnation points, and
the pressure distribution, given that the flow is steady.

113
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Solution: To be a valid velocity potential, ¢ must satisfy the condition of irrotationality.
For this two-dimensional, Cartesian flow field, we have

u = (')ﬁ and v = %
- Oz Oy
Therefore
u=32?—3y?> and v=—6ay (6.1)
The curl of the velocity is given by
ov  Ou
VXxV=|(——-+—) k=(-6y+6y) k=0
x < o ay) (—6y + 6y)
and so ¢ is a valid velocity potential.
The divergence of the velocity field is given by
ou  Ov
V- V=—4_—=06z—-62=0
ox + dy Lo
and so the flow field is incompressible.
From the definition of the stream function
u = 8—1/} and v = _5‘71/1
Oy - Oz

Using the result given in equation 6.1, we obtain by integration
v = 3y -y’ + fla) +Cu
and v = 32y +gly) + Oy

where C7 and Cs are constants of integration, and f and g are unknown functions of « and
1y, respectively. By comparing the two results for v, we get

Y = 32Py—y*+C

The constant is arbitrary (we are only interested in the derivatives of 1), so we can set it
to zero by choosing ¢ = 0 at the origin. Finally,

Y = 32’y —y°

The stagnation points can be found by locating the points where © = v = 0. For the
velocity field given by equation 6.1, this happens only at the origin, so there is only one
stagnation point, at [0, 0].

The pressure distribution is given by Bernoulli’s equation, so that

p+ 3 (u*+0v%) =po
where pg is a constant for the entire flow field since it is irrotational. Hence
2 2\2
p—po=9 (2> +y*)

Example 6.2: Solutions obtained by superposition

We have demonstrated that it is possible to generate some interesting two-dimensional flows
by superposition of some basic building blocks such as uniform flow, sources, and sinks. In
the same way, we can add vortices, and generate even more flow patterns. Unfortunately,
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the procedure is rather tedious, especially when a large number of elements are used. To
reduce the effort involved in generating such flows, it is possible to use the “Ideal Flow
Machine” available on the web at http://www.engapplets.vt.edu/. By using this resource
(a) Generate the streamline patterns for a source and a sink of equal strength ¢ = Ua, first
separated by a distance a, and then by a distance 2a in the direction of a uniform flow of
strength U.

(b) Repeat this example with the axis joining the source and sink placed at right angles to
the uniform flow.

(c) For the case in part (a), add a vortex of strength I' = Ua, located halfway between the
source and the sink, and then repeat using a vortex of strength I' = 2Ua.

Example 6.3: Lift

Consider a wing traveling at a velocity V, with a span equal to 20c, where ¢ is the chord
length. Given a lift coefficient of 2.0 at a zero angle of attack, find the strength of the
bound vortex, and the velocity at which the trailing vortices move downward under their
own induced velocity field.

Solution: For a two-dimensional wing, the Joukowski lift law (equation 6.42) gives
Fr = pUsl'k

If we assume that the wing has a sufficiently large wingspan so that the two-dimensional
lift estimate is reasonable, we have (since Fy, is the force per unit span)

L pVIk

B 1pV2c N 1pV2c N

Cr,
Therefore,
FK =Vec

If the trailing vortices are approximated as a pair of line vortices of infinite extent, the
downward propagation velocity is given by equation 6.44, so that

T
Up = —
P ms
Hence,
_ Ve _ v
P r20c 20m
so that
1
vV 20r
Problems
6.1 Define vorticity in terms of the vector velocity field. How is the “rotation” of a

fluid particle related to its vorticity? In Cartesian coordinates, write down the general form
of the z-component of vorticity. What is the condition on the vector velocity field such that
a flow is irrotational?

6.2 For a certain incompressible two-dimensional flow, the stream function, 1 (z,y) is
prescribed. Is the continuity equation satisfied?
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6.3 If u = —Ae™ %Y cos kz and v = —Ae~ " sin kz, find the stream function. Is this flow
rotational, or irrotational?

6.4 An inviscid flow is bounded by a wavy wall at y = H and a plane wall at y = 0.
The stream function is ¢ = A (e‘ky — eky) sin kx, where A and k are constants.

(a) Does the flow satisfy the continuity equation?

(b) Is the flow rotational or irrotational?

(c) Find the pressure distribution on the plane wall surface, given that p = 0 at [0, 0].

6.5 An inviscid flow is bounded by a wavy wall at y = H and a plane wall at y = 0.
The stream function is ¢ = A (e*ky - eky) sin kx + By?, where A, B, and k are constants.
(a) Does the flow satisfy the continuity equation?

(b) Is the flow rotational or irrotational?

(c) Find the pressure distribution on the plane wall surface, given that p = 0 at [0, 0].

=2

6 For the flow defined by the stream function v = Vyy:

a) Plot the streamlines.

b) Find the x and y components of the velocity at any point.

¢) Find the volume flow rate per unit width flowing between the streamlines y = 1 and
=2.

P

<

6.7 Find the stream function for a parallel flow of uniform velocity V) making an angle
a with the z-axis.

6.8 A certain flow field is described by the stream function ¥ = xy.

(a) Sketch the flow field.

(b) Find the z and y velocity components at [0, 0], [1,1], [00,0], and [4, 1].

(c) Find the volume flow rate per unit width flowing between the streamlines passing through
points [0, 0] and [1,1], and points [1,2] and [5, 3].

6.9 Express the stream function ¢ = 3z2%y — 3 in cylindrical coordinates (note that
sin® @ = 3sin 6 cos? @ —sin® §). Sketch the streamlines, and find the magnitude of the velocity
at any point.

6.10  For the previous four problems, find the velocity potential, and sketch lines of
constant ¢.

6.11  The velocity potential for a steady flow field is given by 22 — 2. Find the equation
for the streamlines.

6.12  The velocity components of a steady flow field are u = 2czy and v = c(a® + 2% +y?).
Is the flow incompressible? Is it rotational or irrotational? Find the velocity potential and
the stream function.

6.13  The velocity potential for a certain flow is given in cylindrical coordinates by
Cr?cos 26, where C is a constant. Show that this represents the flow in a right-angle
corner. If the velocity at r = 1m, 8§ = 0 is —10m/s, find the velocity at r = 2m, § = 7 /4.

6.14 A fluid flows along a flat surface parallel to the z-direction. The velocity u varies
linearly with y, the distance from the wall, so that u = ky.

(a) Find the stream function for this flow.

(b) Is this flow irrotational?

6.15  Consider the parallel two-dimensional flow shown in Figure P6.15. Is the flow
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irrotational? Find the stream function, given that u = 1.5m/s at y =0, and v = 4m/s at
y=12m.

6.16  Given u, = 1/r and uy = 1/r, find the stream function 1, and sketch the flow field.

6.17  An irrotational, incompressible velocity field is described by the velocity potential
¢ = A0 (A>0).

(a) Sketch lines of constant ¢.

(b) Find the velocity components u, and ug at any point.

(c) Find 1, and sketch a few streamlines.

6.18  An irrotational, incompressible velocity field is described by the stream function
= 243/25in 39

3 27
(a) Plot the streamline ¢ = 0.
(b) Find the velocity at the points defined by the cylindrical coordinates [2, §] and [3, %].
(c) Find the velocity potential ¢.

<=

6.19  Consider the two-dimensional flow of an inviscid, incompressible fluid described by
the superposition of a parallel flow of velocity Vj, a source of strength ¢, and a sink of
strength —gq, separated by a distance b in the direction of the parallel flow, the source being
upstream of the sink.

(a) Find the resultant stream function and velocity potential.

(b) Sketch the streamline pattern.

(c) Find the location of the upstream stagnation point relative to the source.

6.20 A static pressure probe is constructed with a semi-cylindrical nose, as shown in
Figure P6.20. Where should a pressure tap be located so that it reads the same static
pressure as that found far from the probe in a uniform flow?

6.21 A two-dimensional source is placed in a uniform flow of velocity 2m/s in the z-
direction. The volume flow rate issuing from the source is 4 m?/s per meter.

(a) Find the location of the stagnation point.

(b) Sketch the body shape passing through the stagnation point.

(¢) Find the width of the body.

(d) Find the maximum and minimum pressures on the body when the pressure in the
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uniform flow is atmospheric. The fluid is air and its temperature is 20°C.

6.22  Repeat the previous problem using the Java-based potential flow solver available
at: http://www.engapplets.vt.edu, “The Ideal Flow Mapper.”

6.23  Using the potential flow solver available at: http://www.engapplets.vt.edu (“The
Ideal Flow Mapper”), place two sinks and one source along the z-direction, each of strength
1m?3/s per meter, separated from each other by a distance of 2m.

(a) Plot the streamlines.

(b) Locate the stagnation points.

(c¢) Vary the strength of the sinks and source (keeping their relative strengths equal) until
the stagnation points are a distance of 4 m apart.

6.24  Using the potential flow solver available at: http://www.engapplets.vt.edu (“The
Ideal Flow Mapper”), place two sources and two sinks alternately along the z-direction,
spaced 1m apart, each of strength 4m?/s per meter. Add a a uniform flow of velocity
2m/s in the a-direction.

(a) Plot the streamlines.

(b) Vary the strength of the sources and sinks until the streamline defining a closed body
has a major axis that is twice the minor axis.

6.25  Using the potential flow solver available at: http://www.engapplets.vt.edu (“The
Ideal Flow Mapper”), place a doublet of strength —8m?3/s at the center of the field. Add a
a uniform flow of velocity 2m/s in the z-direction. Place a clockwise vortex at the center
of the field. Find the strength of the vortex that will cause the two stagnation points to
coincide.

6.26  Using the potential flow solver available at: http://www.engapplets.vt.edu (“The
Ideal Flow Mapper”), place a clockwise and a counterclockwise vortex of strength 10m?3/s
along the z-direction separated by a distance of 4 m.

(a) Find the velocity u. at the point halfway between them, and check the result against
equation 6.44.

(b) Add a vertical velocity equal to 0.5u,. and find the location of the stagnation points.



Chapter 7

Dimensional Analysis

7.1 Study Guide

e What does “dimensional homogeneity” mean?

e Remember: IT = N — r. That is, the number of dimensionless groups (II-products) is
equal to the number of dimensional parameters (N, which includes the output and all
input parameters) minus the rank of the matrix of dimensions.

e In deriving the dimensionless groups, remember that they must be independent (that
is, any one parameter cannot be formed by a combination of the other parameters). An
easy way to check is to make sure that each dimensionless group contains a parameter
that is not contained by any other group.

e For two flows to be dynamically similar, all of the dimensionless groups must have the
same value.

7.2 Worked Examples

Example 7.1: Vortex shedding

When the wind blows over a chimney, vortices are shed into the wake (see Figures 7.1 and
9.11, and Section 9.5). The frequency of vortex shedding f depends on the chimney diameter
D, its length L, the wind velocity V and the kinematic viscosity of air v.
(a) Express the nondimensional shedding frequency in terms of its dependence on the other

nondimensional groups.
(b) If a 1/10th scale model were to be tested in a wind tunnel and full dynamic similarity
was required

(i) What air velocity would be necessary in the wind tunnel compared to the wind
velocity experienced by the full scale chimney?

(ii) What shedding frequency would be observed in the wind tunnel compared to the
shedding frequency generated by the full scale chimney?

Solution: We are given that
f=9¢D,L,V,v)

so that N = 5.

119
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Figure 7.1: Vortex shedding from a chimney.

For part (a), we write down the matrix of dimensions:

|/ D L V

L 0 1 1 1 2
T| -1 0 0 -1 -1

The rank of the largest determinant is 2, so we need to find N — r = 3 independent dimen-
sionless groups. Two obvious II-groups are the Reynolds number and the length-to-diameter
ratio. We can also make the frequency nondimensional by using the diameter and the ve-

locity. Hence
fD , (VD L
72 ¢ < v’ D)
The ratio fD/V is called the Strouhal number, and it always makes an appearance in
unsteady problems with a dominant frequency (see Section 9.5).
For part (b), to achieve dynamic similarity the II-products in the model tests and the
full-scale flow must be equal. That is,

(7).-(), #),-(7), 6),-6)
v ). v, V). \%4 » D). . D »
where the subscripts m and p indicate the model and “prototype” or full-scale values,
respectively. Starting with the Reynolds number, similarity requires that

VoD _VoDy Vo _ Dyvm

U Vp ’ Vo - D, Vp
Since v, = v, (the fluid is air in both cases), and D,, = 10D,,, we have
Vi = 10V,

The Strouhal number similarity gives

fnDum _ fsDy  fm _ Dy Vi

Vin Vp fr Dm Vp
Since V,,, = 10V}, and D, = 10D,,, we obtain
fm =100f,

To have a dynamically similar model, therefore, we will need to run the wind tunnel at
a speed 10 times greater than the natural wind speed, and we expect to see a shedding
frequency 100 times greater than for the full-scale chimney.
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Figure 7.2: A cone and plate viscometer.

Example 7.2: Viscometer

A cone and plate viscometer consists of a cone with a very small angle o which rotates above
a flat surface, as shown in Figure 7.2. The torque required to spin the cone at a constant
speed is a direct measure of the viscous resistance, which is how this device can be used to
find the fluid viscosity. We see that the torque T is a function of the radius R, the cone
angle «, the fluid viscosity u, and the angular velocity w.

(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups.

(b) If @ and R are kept constant, how will the torque change if both the viscosity and the
angular velocity are doubled?

Solution: We are given that
T = QS(R,O‘,N?UJ)

So that N = 5. The dimensions of torque are force x distance, that is, MLT 2L =
ML?T~2, and the dimensions of viscosity are stress over velocity gradient, that is, M LT 2L 2
x(LT~'L~Y)~1 = ML~'T-1,

For part (a), we write down the matrix of dimensions

T R o u w
M 1 0 0 1 0
L 2 1 0 -1 0
T | -2 0 0 -1 -1

The rank of the largest determinant is 3, so we need to find 2 independent dimensionless
groups. One dimensionless number is given by the angle aw. The second will be a combination
of the other parameters so that the torque becomes nondimensional . Hence,

T

LW RD = ¢ (@)

For part (b), if « is constant, the parameter T'/(uwR?) must also remain constant to
maintain full similarity. So when g and w are both doubled, the torque T' will increase by
a factor of 4.

Example 7.3: Draining tank

A large water tank slowly empties through a small hole under the action of gravity. The
flow is steady, and the volume flow rate ¢ depends on the exit velocity U, the gravitational
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acceleration g, the depth of the water h, and the diameter of the nozzle D.

(a) By using dimensional analysis, find the nondimensional groups that govern the behavior
of the nondimensional flow rate.

(b) A test is to be made on a 1/4th scale model. If the test is designed to ensure full dynamic
similarity, what is the ratio of model volume flow rate to prototype volume flow rate?

(¢) If you now decide that, instead of the volume flow rate, you are interested in the mass
flow rate r (the density must therefore be included in the dimensional analysis), will the
number of nondimensional groups change?

(d) If you later discover that the mass flow rate i depends on the viscosity p and the surface
tension o (dimensions of force per unit length), in addition to p, U, g, h, and D, find all
the relevant nondimensional groups.

Solution: For part (a), we are given that

¢ = ¢UghD)

so that N = 5. The dimensions of volume flow rate are L37T !, and the matrix of dimensions
becomes
‘ g U ¢ h D
L| 3 1 1 1 1
T|-1 -1 -2 0 0

The rank of the largest determinant is 2, so we need to find 3 independent dimensionless
groups. By inspection, one dimensionless number is given by the ratio of lengths D/h. The
second will be the nondimensional volume flow rate, for example, ¢/U D?, and the third will
be a Froude number, U/+/gh. Hence,

i _ (DU

UD?2 h’ \/gh
For part (b) dynamic similarity requires that all the nondimensional parameters take

the same values in the model and prototype. Therefore

Gm dp

UnD2, ~— U,D2

Since D, /D,,, = 4, we have

dm _ Um
dp 16U,
We also require
Un  Up
ghm /gl
Since hp/hm = 4,
Un ghm 1
U, ghyp T2
and therefore, for dynamic similarity,
Gm 1
dp 32

For part (c), we are given that

m = ¢(UagahaDap)



7.2. WORKED EXAMPLES 123

so that N = 6. The dimensions of mass flow rate are MT !, and the matrix of dimensions
becomes

m g h D p
M 1 0 0 0 0 1
L 0 1 1 1 1 -3
T|-1 -1 -2 0 0 0

The rank of the largest determinant is 3, so we will still have 3 independent dimensionless
groups. By inspection we find that they are 1/pUD?, D/h, and U/+/gh.
For part (d), we are given that

m = ¢(U,g,h,D,p,u,0).

so that N = 8. The dimensions of the surface tension are force per unit length, MT 2, and
the matrix of dimensions becomes

m U ¢g h D p u o
M 0 0 0 0 0 1 1 1
L 3 1 1 1 1 -3 -1 0
T|-1 -1 -2 0 0 0 -1 -2

The rank of the largest determinant is 3, so we will need to find 5 independent dimensionless
groups. We already have three: the nondimensional mass flow rate 1 /pUD?, the ratio of
lengths D/h and the Froude number, U/\/gh. The fourth II-product will be a Reynolds
number, pUd/p, and the fifth will be a nondimensional surface tension such as o/pU?D.

Hence
mo & 2 U pUD o
pUD?2 h’\gh' w pU2D

Example 7.4: Nuclear explosion

Imagine you were given a film of the first atomic bomb explosion in New Mexico. In the
movie, there are some images of trucks and other objects that provide a length scale, so
that you can plot the radius of the fireball r as a function of time ¢. Can you estimate F,
the energy released by the explosion?

Solution: The most difficult part is choosing the shortest, correct list of variables. If we
had some insight, and some luck, we might suppose that

r=fy(E,t,p)

where p is the ambient density before the explosion takes place. Energy has the dimensions
of a force x a length, that is, M L?T~2, and the matrix of dimensions is

r FE t p
M| O 1 0 1
L 1 2 0 -3
T 0 -2 1 0

We see that N = 4, the rank of the matrix is 3, and therefore the number of dimensionless
groups is 1. So
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Figure 7.3: The first nuclear explosion in history took place in New Mexico, on July 16 1945,
5:29:45 A.M., at the Alamogordo Test Range, on the Jornada del Muerto (Journey of Death)
desert, in the test named Trinity. Left: Trinity at 6, 16, and 34 ms. Right: 53, 90, and 109 ms. At
6 ms, the fireball is about 100 m in diameter. Photos by Berlyn Brixner, LANL.

or, better,

L, = — (£>1/5
t2/5 \E
The constant II;” must be found by experiment. For example, we can use film of another
explosion of conventional explosives where the energy release is known to find II;". This
experiment can also be used to check the analysis: if  varies as t2/°, as predicted, then our
analysis is substantiated and the film of the atomic explosion contains all the information
required to find the energy released by the bomb.

This analysis was first performed by the British scientist Sir Geoffrey Ingram Taylor
at a time when information on the explosive power of atomic bombs was highly classified.
He used films of the explosion, such as the one illustrated in Figure 7.3. When he tried to
publish his findings, which gave a very good estimate of the actual energy released, he found
his paper immediately classified at such a level that even he was not allowed to read it.

Problems

7.1 The velocity of propagation c¢ of surface waves in a shallow channel is assumed to
depend on the depth of the liquid h, the density p, and the acceleration due to gravity g.
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By means of dimensional analysis, simplify this problem and express this dependence in
nondimensional terms.

7.2 The period of a pendulum 7' is assumed to depend only on the mass m, the length
of the pendulum ¢, the acceleration due to gravity g, and the angle of swing 6. By means of
dimensional analysis, simplify this problem and express this dependence in nondimensional
terms.

7.3 The sound pressure level p’ generated by a fan is found to depend only on the fan
rotational speed w, the fan diameter D, the air density p, and the speed of sound a. Express
this dependence in nondimensional terms.

7.4 The power input to a water pump, P, depends on its efficiency 7, its discharge
(volume flow rate) ¢, the pressure increase Ap across the pump, the density of the liquid p,
and the diameter of the impeller D. Express this dependence in nondimensional terms.

7.5 The thrust T of a marine propeller is assumed to depend only on its diameter D,
the fluid density p, the viscosity u, the revolutions per unit time w, and its forward velocity
V. Express this dependence in nondimensional terms.

7.6 In Section 1.6.3, it was argued that the viscosity must depend on the average
molecular speed v, the number density p and the mean free path £. Express this dependence
in nondimensional terms.

7.7 A ship 100m long moves in fresh water at 15°C. Find the kinematic viscosity of a
fluid suitable for use with a model 5m long, if it is required to match the Reynolds number
and Froude number. Comment on the feasibility of this requirement.

7.8 The height A to which a column of liquid will rise in a small-bore tube due to surface
tension is a function of the density of the liquid p, the radius of the tube r, the acceleration
due to gravity g, and the surface tension of the liquid o (see Section 1.9.3).

(a) Express this dependence in nondimensional terms.

(b) If the capillary rise for liquid A is 25mm in a tube of radius 0.5 mm, what will be the
rise for a liquid B having the same surface tension but four times the density of liquid A in
a tube of radius 0.25mm a dynamically similar system? Also find rg.

7.9 A chimney 100 ft high is being forced to vibrate at a frequency f in a wind of
20 ft/s by vortices that are shed in its wake. This phenomenon depends on the fluid density
p and viscosity u and the chimney material modulus of elasticity F, where E = stress/strain.
A model is constructed which is geometrically similar to the chimney in every way and is
10 ft high. The mass per unit length, m, of chimney model can be adjusted by attaching
dummy masses inside without affecting its elastic behavior. Gravity is not involved in this
problem.

(a) Using dimensional analysis derive all relevant nondimensional groups. Try to use phys-
ically meaningful nondimensional groups wherever possible. Make sure these groups are
independent.

(b) If the full-scale chimney is made from steel with a modulus of elasticity F = 30 X
10%1by /in?, find the necessary modulus of elasticity so as to simulate the correct conditions
at the model scale.

(c) At what frequency would you expect the full scale chimney to vibrate if the model
vibrates at 5 Hz?

7.10  Two cylinders of equal length are concentric: the outer one is fixed and the inner
one can rotate with an angular speed w. A viscous incompressible fluid fills the gap between
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them.
(a) Using dimensional analysis, derive an expression for the torque T required to maintain
constant-speed rotation of the inner cylinder if this torque depends only on the diameters
and length of the cylinders, the viscosity and density of the fluid, and the angular speed of
the inner cylinder.
(b) To test a full-scale prototype, a half-scale model is built. The fluid used in the prototype
is also to be used in the model experiment. If the prototype angular speed is w, and the
prototype torque is Tj,
(i) At what angular speed must the model be run to obtain full dynamical similarity?
(ii) How is the model torque related to the prototype torque?

7.11  The power P required to drive a propeller is known to depend on the diameter of
the propeller D, the density of fluid p, the speed of sound a, the angular velocity of the
propeller w, the freestream velocity V', and the viscosity of the fluid u.

(a) How many dimensionless groups characterize this problem?

(b) If the effects of viscosity are neglected, and if the speed of sound is not an important
variable, express the relationship between power and the other variables in nondimensional
form.

(c) A one-half scale model of a propeller is built, and it uses P, horsepower when running
at a speed wy,. If the full-scale propeller in the same fluid runs at w,, /2, what is its power
consumption in terms of P, if the functional dependence found in part (b) holds? What
freestream velocity should be used for the model test?

7.12  The torque T required to rotate a disk of diameter D with angular velocity w in a
fluid is a function of the density p and the viscosity p of the fluid (torque has units of work).
(a) Find a nondimensional relationship between these quantities.

(b) Calculate the angular velocity and the torque required to drive a 750 mm diameter disc
rotating in air if it requires a torque of 1.2 Nm to rotate a similar disc of 230 mm diameter
in water at a corresponding speed of 1500 rpm. Assume the temperature is 15°C.

7.13  Consider geometrically similar animals of different linear size, L. Assume that the
distance an animal can jump, H, is a function of L, the average density p, the average
muscle stress o (that is, muscle force over leg cross-sectional area), and the gravitational
constant g.

(a) Find a nondimensional functional expression for H.

(b) In Swift’s Gulliver’s Travels, the Lilliputians were a race of very small people, tiny
compared to Gulliver’s size. If the Lilliputians had the same p and ¢ as Gulliver, what
conclusions can you draw on dimensional grounds? Would they jump higher than Gulliver?
The same height as Gulliver? Lower than Gulliver?

7.14 A simple carburetor is sketched in Figure P7.14. Fuel is fed from a reservoir (main-
tained at a constant level) through a tube so as to discharge into the airstream through an
opening where the tube area is a. At this point, the flow area for the air is A and the fuel
level is a distance L higher. Let the density and mass flow rate for the air and fuel be p,,
Mg and py, My respectively.

(a) Assuming the flows are inviscid, perform a dimensional analysis to determine the fuel-air
ratio, 1y /1, as a function of the other dimensionless parameters.

(b) Analyze the problem dynamically and determine a specific relationship between 1z /i,
and the relevant variables.

7.15 A golf ball manufacturer wants to study the effects of dimple size on the performance
of a golf ball. A model ball four times the size of a regular ball is installed in a wind tunnel.
(a) What parameters must be controlled to model the golf ball performance?
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Figure P7.14

(b) What should be the speed of the wind tunnel to simulate a golf ball speed of 200 ft/s?
(¢c) What rotational speed must be used if the regular ball rotates at 60 revolutions per
second?

7.16  When a river flows at a velocity V past a circular pylon of diameter D, vortices
are shed at a frequency f. It is known that f is also a function of the water density p and
viscosity p, and the acceleration due to gravity, g.

(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups.

(b) A test is to be performed on a 1/4th scale model. If previous tests had shown that
viscosity is not important, what velocity must be used to obtain dynamic similarity, and
what shedding frequency would you expect to see?

7.17 A propeller of diameter d develops thrust 7" when operating at N revolutions per
minute with a forward velocity V in air of density p.

(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups. Try to choose groups that look familiar.

(b) The single propeller described above is to be replaced by a pair of two propellers of
the same shape operating at the same forward velocity and together producing the same
thrust in air with the same density. Use the concepts of dynamic similarity to determine
the diameter ds and the rotational speed N5 of each of the propellers.

(c) What change in power, if any, is required?

7.18  The lift force F' on a high-speed vehicle is a function of its length L, velocity V,
diameter D, and angle of attack « (the angle the chord line makes with the flow direction),
as well as the density p and speed of sound a of air (the speed of sound of air is only a
function of temperature).
(a) Express the nondimensional lift force in terms of its dependence on the other nondimen-
sional groups.
(b) If a 1/10th scale model were to be tested in a wind tunnel at the same pressure and
temperature (that is, the same sound speed) as encountered in the flight of the full-scale
vehicle, and full dynamic similarity was required

(i) What air velocity would be necessary in the wind tunnel compared to the velocity of
the full-scale vehicle?

(ii) What would be the lift force acting on the model compared to the lift force acting
on the vehicle in flight?

7.19  The drag of a golf ball Fp depends on its velocity V, its diameter D, its spin rate
w (commonly measured in radians/sec, or revolutions per minute), the air density p and
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viscosity p, and the speed of sound a.

(a) Express the nondimensional drag force in terms of its dependence on the other nondi-
mensional groups.

(b) If it was decided that the speed of sound was not important, how would this change the
dimensional analysis? Under these conditions, if an experiment was carried out in standard
air at a velocity of 2V, what diameter and spin rate would be required to be dynamically
similar to an experiment at a velocity of V7

(c¢) Design an experiment to investigate the influence of the speed of sound on the drag.
Start by considering the requirements for dynamic similarity, and then explain how the
influence of sound speed on the drag could be isolated by an experiment. Be as specific as
you can.

7.20  Consider a hydraulic jump in a viscous fluid.
(a) Carry out a dimensional analysis of a hydraulic jump that includes the effects of viscosity.
(b) Find the minimum number of nondimensional parameters describing this flow, and write
the functional relationship governing the ratio of downstream to upstream depth.
(c) If a 1/4th scale model of a hydraulic jump was to be tested in the laboratory

(i) What is the ratio of incoming flow velocities for the model and the full-scale required
for dynamic similarity.

(ii) What is the ratio of kinematic viscosities required for the model and the full-scale?

7.21 A large water tank empties slowly through a small hole under the action of gravity.
The flow is steady, and the mass flow rate mm depends on the exit velocity V', the gravitational
acceleration g, the depth of the water h, the diameter of the nozzle D, the viscosity u, and
the surface tension o (force/unit length).
(a) Express the nondimensional mass flow rate in terms of its dependence on the other
nondimensional groups.
(b) If an experiment was carried out using the same fluid (water) in a 1/5th scale model
(i) What is the ratio of the model mass flow rate to prototype mass flow rate that would
be needed to obtain dynamical similarity.
(ii) Do you anticipate any difficulties in obtaining full dynamical similarity?

7.22  Tests on a model propeller in a wind tunnel at sea level (air density p = 1.2 kg/m3)
gave the following results for the thrust at given forward velocities:

V (m/s) 0 10 20 30
Thrust (N) | 300 278 211 100

The propeller diameter was 0.8 m and it was spun at 2000 rpm.

(a) Using dimensional analysis find the nondimensional parameters which govern this ob-
served behavior.

(b) Using the experimental data given in the table find the thrust generated by a geo-
metrically similar propeller of diameter 3 m, spinning at 1500 rpm at a forward velocity of
45m/s, while operating at an altitude where the density is half that at sea level. You may
interpolate from tabulated values.

7.23 In testing the aerodynamic characteristics of golf balls, the scientific officers at
the USGA collected the experimental data given below. The diameter is always D, the
roughness height is k, the air density is p (= 1.2kg/m?), the freestream velocity is V, the
lift force L is in Newtons, and the rate of spin w is measured in revolutions per second.

(a) How many nondimensional parameters describe this problem?

(b) Express all the experimental data in nondimensional form and plot the data in this
form.



PROBLEMS Chapter 7 129

(¢) By comparing the results from Balls 1 and 2, what can you say about the effect of
roughness?

(d) By comparing the results from Balls 1 and 3, can you say that the experiments were
dynamically similar?

w 20 40 60 80
L|-18 409 +72 418

Ball 1: D =42.7mm, k=0, V = 100m/s

w ) 15 25 35
L |-023 -0.23 40.68 +2.7

Ball 2: D =42.7mm, k=1mm,V =50m/s

w 1 2 3 4
L|-087 -029 +1.7 4538

Ball 3: D =171mm, k=4mm, V =20m/s

7.24  The resistance of a sea-going ship is due to wave-making and viscous drag, and it
may be expressed in functional form as

Fp=f(V,L,B,p,u,g)

where Fp is the drag force, V is the ship speed, L is its length, B is its width, p and p are
the sea water density and viscosity, and g is the gravitational constant.

(a) Find the nondimensional parameters that describe the problem.

(b) If we are to test a model of the ship, what are the requirements for dynamic similarity?
(c) We are going to test a 1/25th scale model of a 100 m long ship. If the maximum velocity
of the full-scale ship is 10m/s, what should the maximum speed of the model be? What
should the kinematic viscosity of the model test fluid be compared to the kinematic viscosity
of sea water?

7.25  The drag force Fp acting on a ship depends on the forward speed V, the fluid
density p and viscosity p, gravity, its length L and width B and the average roughness
height k.

(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups.

(b) If the ship moved from fresh water to salt water, where the density and viscosity are
both increased by 10%, how would its drag force change at fixed speed?

7.26  The drag D of a ship’s hull moving through water depends on its speed V, its
width W, length L and depth of immersion H, the water density p and viscosity p, and the
gravitational acceleration g.
(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups. Try to choose groups that look familiar.
(b) The full-scale ship will have a velocity V7 and it will operate in sea water with a kinematic
viscosity v.

(1) If the wave pattern produced by a 1/30th scale model is to be similar to that observed
on the full-scale ship, what must be the model test velocity V57

(ii) To obtain full dynamic similarity, what must be the kinematic viscosity v» of the test
fluid?

7.27 A 1/10th scale model of a windmill is placed in a wind tunnel. The power W,
depends on the number of blades n, the wind velocity V', the diameter of the blades D, the
density of the air p, and the frequency of rotation w.
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(a) Express the non-dimensional power as a function of the other nondimensional groups.
Show all your working.

(b) If the experiment was carried out at the same velocity as the full-scale prototype, what
is the ratio of the model rotation frequency to prototype rotation frequency that would
be needed to obtain dynamical similarity? What would be the ratio of model power to
prototype power?

7.28  The lift force (F') produced by a fly depends on the wing beat frequency (f), its
forward velocity (V), the density (p) and viscosity (i) of the fluid, the length or “span” (.9),
and width or “chord” (c) of the wings, and the Youngs modulus of the wing material (E,
dimensions of stress).

(a) Express the non-dimensional lift force as a function of the other non-dimensional groups.
(b) A fly is observed to travel at 1 m/s when it beats its wings at 120 Hz. If a dynamically
similar robotic fly was built 100 times larger than a real fly, what would the forward velocity
and wing beat frequency be if it was tested in silicon oil with a density equal to that of
water, but with a viscosity 50 times that of water?

7.29  The power P required to turn a ship will depend on its velocity V, its length L, its
width B, the water density p and viscosity u, the rate of turning w, and the acceleration
due to gravity g.

(a) Express the non-dimensional power in terms of its dependence on the other non-dimensional
groups. Show all your working.

(b) Tt is proposed to test a model ship at 1/100th scale. What scaled velocity, kinematic
viscosity, and turning rate would be required for the test to be dynamically similar? Do you
foresee any possible difficulties in performing this test?

7.30  The drag force (F') produced by an eel swimming on the surface of a lake depends
on the frequency of the tail beat (f), the peak-to-peak amplitude of the tail movement (d),
its forward velocity (V'), the density (p) and viscosity (u) of the fluid, its length (L), and
the acceleration due to gravity (g).

(a) Express the non-dimensional drag force as a function of the other non-dimensional
groups. Try to use groups that are in common use.

(b) An eel is observed to travel at 1 m/s in water when it beats its tail at 1 Hz. What would
the forward velocity and tail beat frequency of a dynamically similar robotic eel that is 3
times larger than a real eel? What would the kinematic viscosity of the test fluid need to
be (compared to water) to maintain dynamic similarity?

7.31 A waterfall designed for the Ground Zero memorial consists of a sheet of water
(density p, viscosity u, surface tension o) of thickness h and velocity V' passing over a short
ramp inclined at an angle « to the horizontal. As the sheet falls under the action of gravity
(acceleration g) , it breaks up into a number of ribbons of width w.

(a) Express the non-dimensional ribbon width in terms of its dependence on the other non-
dimensional groups (surface tension has the dimensions of force/unit length). Show all your
working.

(b) It is proposed to test a model waterfall at 1/10th scale. If water is used in the model
test, what scaled velocity would be required for the model test to be dynamically similar
to the full scale? Explore all possibilities. Do you foresee any difficulties in performing this
test?

7.32  The pressure difference across a pump (Ap) is a function of the volume flow rate
through the machine (¢), the size of the machine, denoted by, for example, the diameter of
the rotor (D), the rotational speed (N) usually measured in rpm or revolutions per second,
and the density (p) and viscosity (@) of the fluid.
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(a) Express the non-dimensional pressure drop as a function of the other non-dimensional
groups.

(b) Tests on a model water pump are performed at one-half scale. To achieve dynamic
similarity in the model test, what would the ratio of the model to full-scale prototype
rotational speeds need to be? What would the ratio of the volume flow rates need to be?
Water is used in the test and the prototype.

7.33  The support for a Pitot probe on an aircraft is a circular cylinder of diameter D
inclined at an angle « to the local velocity direction. When the aircraft flies at a speed V,
the support sheds vortices at a frequency f. The shedding frequency depends on D, «, V,
the fluid density p and viscosity u, and the speed of sound a.

(a) Express the non-dimensional frequency in terms of its dependence on the other non-
dimensional groups. Show all your working.

(b) It is proposed to test a model support at 1/5th scale. If air were used in the model test,
what scaled velocity would be required for the model test to be dynamically similar to the
full scale? Explore all possibilities. Do you foresee any difficulties in performing this test?

7.34  The drag force experienced by a commercial transport (such as a 787) in cruise
depends on its surface area (A), its velocity (V'), the speed of sound (a), the density (p) and
viscosity (u) of the fluid, and its angle of attack («).

(a) Express the non-dimensional drag as a function of the other non-dimensional groups.
(b) Tests on a model 787 are performed at 1/40th scale. Assume that the speed of sound in
the wind tunnel is one-half the speed of sound of the full-scale aircraft. To achieve dynamic
similarity in the model test, what would the wind tunnel speed need to be in the model
compared to the full-scale prototype? What would the kinematic viscosity of the wind
tunnel fluid be compared to air?

7.35  The drag force F' acting on a bullet of diameter D and length L is described in
terms of its velocity V', the fluid density p and viscosity p, the speed of sound a, and ~ (the
ratio of the specific heat at constant pressure to the specific heat at constant volume).

(a) Express the nondimensional drag force in terms of its dependence on the other non-
dimensional groups. Show all your working.

(b) Tt is proposed to test a model bullet at 1/2 scale. If air were used in the model test
(as in the full scale prototype), what velocity would be required for the model test to be
dynamically similar to the full scale? Explore all possibilities. Do you foresee any difficulties
in performing this test?

7.36  The power or energy per unit time (P) generated by a windmill depends on the
number of blades (N), the length (L) and chord or width (C) of each blade, the blade angle
of attack (), the frequency of rotation (w), the wind velocity (V'), and the density (p) and
viscosity (u) of the air.
(a) Express the non-dimensional power as a function of the other non-dimensional groups.
(b) Tests on a model windmill are performed in a wind tunnel at 1/5th scale.

(i) Find the speed of the flow in the wind tunnel necessary to achieve full similarity
relative to that experienced by the full-scale windmill.

(ii) What would be the power generated by the model compared to the full-scale proto-
type?

(iii) What would the frequency of rotation be of the model compared to the full scale?

7.37  Particles are injected into water flowing through a pipe. N, the number of parti-
cles per unit volume in the flow at any given station downstream of the point of injection,
depends on the distance from the point of injection x, the particle diameter d, the density
of the particles p,, the density of water p, the viscosity of the water p, the pipe diameter
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D, the average flow velocity V, and the acceleration due to gravity g.

(a) Express the non-dimensional number of particles per unit volume in terms of its depen-
dence on the other non-dimensional groups. Show all your working.

(b) It is proposed to test a model pipe at 1/4 scale. If the test fluid used in the model
test were not known, what velocity would be required for the model test to be dynamically
similar to the full scale? What would the kinematic viscosity of the test fluid need to be
compared to water to obtain full dynamic similarity?

7.38  The distance s a rotating ball will skip on the surface of water depends on its initial
velocity V, initial height above the water h, initial angular velocity w, the ball diameter d,
the gravitational acceleration g, and the coefficient of restitution of the water surface e (the
ratio of incoming and rebound velocities).

(a) Express the non-dimensional distance as a function of the other non-dimensional groups.
(b) Tests on a model ball are performed at 4x full scale. To achieve dynamic similarity in
the model test, what would the initial velocity need to be in the model test compared to
the full-scale? What would the initial rotation rate need to be in the model test compared
to the full-scale?

7.39  The distance s a golf ball carries depends on its initial velocity V' and angular
velocity w, its diameter d, the air density p and dynamic viscosity u, and the average depth
of the dimples k.

(a) Express the non-dimensional distance as a function of the other non-dimensional groups.
(b) Tests on a model golf ball are performed in a wind tunnel at 4x full scale. To achieve
dynamic similarity in the model test, what would the wind tunnel speed need to be in the
model test compared to the full-scale? What would the rotation rate need to be in the
model test compared to the full-scale?

7.40  The thrust T developed by a marine propeller depends on the flow velocity V', the
density of the water p, the propeller diameter D, its rate of rotation w, the absolute pressure
at the depth of the propeller p, and the viscosity u.
(a) Express the non-dimensional thrust as a function of the other non-dimensional groups.
(b) Tests on a model propeller are performed in water at half full scale. Assume that the
Reynolds number is large enough so that the effects of viscosity can be neglected. To achieve
dynamic similarity in the model test:

(ii) What would the flow velocity need to be in the model test compared to the full-scale,
assuming the absolute pressures are matched?

(i) What would the rate of rotation need to be in the model test compared to the full-
scale?

7.41  The pressure difference Ap produced by a water pump, and the power P required
to operate it, each depend on the size of the pump, measured by the diameter D of the
impeller, the volume flow rate ¢, the rate of rotation w, the water density p and dynamic
viscosity p.

(a) Express the non-dimensional pressure difference and power as separate functions of the
other non-dimensional groups.

(b) Tests on a model pump are performed at 0.5 x full scale, at a rotation rate that is 2
x the full-scale value. To achieve dynamic similarity in the model test: (i) what would the
volume flow rate of the water need to be in the model test compared to the full-scale? (ii)
What would the pressure difference be compared to the full scale? (iii) What would the
power consumption be relative to the full scale?

7.42 The power P developed by the helical flagellum of a bacteria swimming in water,
as shown in Figure P7.42, depends on the helix angle 6, the flagellum diameter d, the helix
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b,

Figure P7.42

diameter D, its length L, its rate of rotation w, the fluid viscosity u, and the stiffness of
the helix as measured by the product of Young’s modulus and the moment of inertia ET
(Pa.m?).
(a) Express the non-dimensional power as a function of the other non-dimensional groups.
(b) Tests on a model flagellum are performed in a fluid with a viscosity 1000 times larger
than water, at a model scale 100 times larger than the organism. The stiffness ET of the
model is 10° times greater than in the organism. To achieve dynamic similarity in the model
test:

(i) What would the rate of rotation need to be in the model test compared to the
organism?

(ii) What power would be be required to drive the model compared to the organism?

7.43  Wind blowing past a flag causes it to flutter in the breeze. The frequency of this
fluttering, w, is assumed to be a function of the wind speed V, the air density p, the accel-
eration due to gravity g, the length of the flag ¢, and the area density pa (with dimensions
of mass per unit area) of the flag material. It is desired to predict the flutter frequency of
a large 12m flag in a 10m/s wind. To do this a model flag with £ = 1.2m is to be tested
in a wind tunnel.

(a) Express the non-dimensional frequency as a function of the other non-dimensional
groups.

(b) Determine the required area density of the model flag material if the large flag has
pa = lkg/m>.

(c) What wind tunnel velocity is required for testing the model?

(d) If the model flag flutters at 6 Hz, predict the frequency for the large flag.

7.44  The pressure difference Ap required to drive the flow of water in a needle depends
on the water viscosity u, the surface tension o (force per unit length), the needle diameter
D, the flow velocity V, and the speed of sound in air a.
(a) Express the non-dimensional pressure difference as a function of the other non-dimensional
groups.
(b) Tests on a model needle are performed at twice full scale. Assume that the effects of
compressibility can be neglected. To achieve dynamic similarity in the model test:

(i) What would the flow velocity need to be in the model test compared to the full-
scale?

(ii) What would the pressure difference need to be in the model test compared to the
full-scale?
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Chapter 8

Viscous Internal Flows

8.1

8.2

Study Guide

What is the Moody Diagram?
Explain briefly why a faucet acts to control the flow rate.
What is a reasonable upper limit on the Reynolds number for laminar pipe flow?

At what Reynolds number would you expect fully developed pipe flow to become
turbulent? Write down the definition of the Reynolds number for pipe flow and explain
your notation.

Compare the velocity profile, the wall shear stress, and the pressure drop per unit
length for laminar and turbulent pipe flow (draw some diagrams to illustrate your
answer).

In Section 8.9, it is stated that squeezing a hose at its exit will only increase the exit
velocity for fL/D > 1. By using the energy equation, demonstrate the accuracy of
this statement.

Worked Examples

Example 8.1: Pipe flow with friction

Consider a large tank filled with water draining through a long pipe of diameter D and
length L = 100D, located near the bottom of the tank (Figure 8.1). The entrance to the
pipe is square-edged, and there is a ball valve to control the flow rate. The valve is wide

Ll L (= 100D)

D Bzall valve
l r - —V

"t

Figure 8.1: Tank draining through a pipe, with losses.

135
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open, and the pipe is horizontal. Find an expression for the average exit velocity V. The
Reynolds number of the pipe flow is 2000, so that the flow is laminar. The flow can be
assumed to be steady and adiabatic.

Solution: For laminar flow, @ = 2. The loss coefficient K for a square-edged entrance is
0.5, and at the exit, all the kinetic energy of the flow is lost, so that the loss coefficient at this
point is 1.0 (see Table 8.2). The ball valve has an equivalent length L./D = 3 (Table 8.3).
At this Reynolds number, the friction factor f = 0.032 (Figure 8.7). The one-dimensional
energy equation (equation 8.30), starting at a point on the free surface of the tank and
ending at the exit of the pipe, gives

-2

v
(pa—i-O-i-gH>— Py o 0] = ghe
P p 2

so that
—2 —2 —2
Vv Vv L.V LV?
H = _— K* [ R
g oyt IS S
— 1V (240.5+ 1.040.032 x 3+ 0.032 x 100)
Therefore

V = 0.542\/gH = /0.294gH

We see that the exit velocity found here is very much less than the ideal value for frictionless

flow (= v2¢H).

Example 8.2: Pipe flow with friction

Figure 8.2 shows water at 60°F flowing in a cast iron pipe. The pressure drop p; — p2 =
3500 lbf/ftQ, the height difference zo — 21 = 30 ft, the length L = 150f¢, and the diameter
D = 3in. Find the volume discharge rate ¢. Ignore minor losses, and assume that the flow
is turbulent.

Solution: To find ¢, we need to know the average velocity in the pipe V. The one-
dimensional energy equation gives:

—2 =2
\% v

(pl +a1—- +gzl> - (m +ar—- +QZ2> = ghy
p 2 p 2

Figure 8.2: Water flowing uphill in a smooth pipe.
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For turbulent flow, as = oy = 1.0, and

—2

f%% = pfp P2 4 gz — )
To find V, we need to know the friction factor. But the friction factor depends on the
Reynolds number, and without knowing V, we cannot find the Reynolds number. However,
if the Reynolds number is large enough, the friction factor for a rough pipe is independent of
Reynolds number (see Figure 8.7). From Table 8.1, we see that cast iron pipes typically have
k = 0.00085 ft, so that k/D = 0.0034. For large Reynolds numbers, the Moody diagram
then gives f = 0.027. Therefore

772 2D |p1—p2
vio= 22 -
77 et =)
2 0.25( 35001b; )
- 322 ft/s% x 30 ft
0.027 150 (1.9383[ug/ft3 Jt/s™x f)
and so -
V = 10.2 ft/s
Hence

¢ = ID?V = 0.50 ft*/s

Before we accept this answer, we need to check that the Reynolds number is high enough
for the pipe to be fully rough. That is,

VD  102x025
Re = == = {31 <105 ~ 21h000

The Moody diagram shows that at this Reynolds number the flow is not yet fully rough,
and the friction factor is a little higher than we assumed — closer to 0.028 than 0.027. To
obtain a more accurate answer for the volume flow rate, we would need to iterate. When
we use f = 0.028, we find that V = 10.0 ft/s, ¢ = 0.49 ft3/s, and Re = 207,000. The
corresponding friction factor is again 0.028, so this second value of ¢ is accurate enough.

Example 8.3: Pipe flow with shaft work

Consider the previous example, where a 20 hp pump is now placed halfway along the pipe.
We will assume that the pressure drop remains the same at 3500(bs/ ft2, and the friction
factor is 0.028. Find the volume flow rate through the pipe.

Solution: The energy equation becomes

—2 —2 .

V V WS a

(pl + o1 —- +921> - (pQ + oo —- +932> = ghy — —halt
P 2 o 2 m

where Wi, #¢ 1s positive since the pump does work on the fluid. That is,

—2 .

Vi i Wshaft

2 m

P1— P2

L
P Jrg(Zl*Zz):fB

Wihast = 20 hp, so that

Wshaft _ 20 x 550 ft2/52 _

115,630
m 1.938 x £ D2V v

= ft2/82
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4.0 atm

1.5 atm 2.5 cm dia

20 liters/s
10 em dia

Figure 8.3: Control volume for the pump.

where V is measured in ft/s. The energy equation becomes

1806 — 966 — 847> _ 119630

so that . -
V- —100V — 13765 =0

This equation has one physically meaningful solution, where V = 25.4 ft/s. Finally, the
volume flow rate is given by

¢ = ID*V = 1.25ft%/s

By comparing this value with the result from the previous example, we see that the addition
of a 20 hp pump has more than doubled the volume flow rate.

Example 8.4: Power required to drive a pump

A pump delivers 201/s (liters per second) of water at 5°C, increasing the pressure from
1.5atm to 4.0atm (see Figure 8.3). The inlet diameter is 10 cm, and the outlet diameter
is 2.5ecm. The inlet and outlet are approximately at the same height, and the change in
internal energy is negligible. The flow can be assumed to be one-dimensional. If there is no
heat transfer to the fluid, and there is no work done by viscous forces:

(a) Find the power required to drive the pump, Wpump.

(b) Find the change in enthalpy of the water.

Solution: For part (a), we apply the one-dimensional energy equation (equation 8.30) to
the control volume shown in Figure 8.3. We have () = 0 and W' = Wehart = Wpump, Where

Winast is the work done on the water by the pump. Hence,

Wshaft _ Wpump

m m

e A 2 A

To find Wpump, we need to find the mass flow rate m, Vi, and V5. The volume flow rate
G =201/s, and so
1000 kg/m® x 201/s

n = T = = 2

me 1031 /m? Okg/s
Also,

g 201/s 1
= — = - 2.
Vo= o = 10 m  Foeme 2
and ] 201 1
Vo = 4 _ /s X =40.7m/s

Ay 1031/m3 " T(0.025)2m2



8.2. WORKED EXAMPLES 139

7
~
7 "
/ ™
7 D
%, e
/// — Expansion 2 Fan 3 D
Z &
///f o
Yy SN
Guide vanes Honeycomb
\ _,Screens -~
\ & Flow Direction ]
\ H —
X =
\\\ =t % )
S - 2
Q\\\ = Contraction Sgcrzlt(i?r? Expansion 1 ////
A% = }
\\\\ = 7
& g

Figure 8.4: Closed-loop wind tunnel.

With p; = 151,988 Pa and ps = 405, 300 Pa, we obtain

(405,300 — 151, 988) Pa
1000 kg/m?

Wpump = 20 kg/s |: + % (4072 — 2552) m2/52

21,566 watt

This is equivalent to 21,566/746 hp = 28.9 hp
For part (b), we use the definition of enthalpy, h = @ + p/p. That is,

hay —hy = <ﬁ2+p2> - <ﬁ1+pl>
P2 1

_ p2op_ (40530015198 Pa _ oy o)
P 1000 kg/m?3

Example 8.5: Wind tunnel

Consider a closed-loop wind tunnel, as shown in Figure 8.4, driven by a 60 kW fan with
an efficiency of 80% at its top speed. The losses in the system are dominated by the
minor losses in the bends and the screens that are used to improve the flow quality. Each
bend is equipped with guide vanes (see Figure 8.12), and they each have a loss coefficient
K}, = 2. There are three screens, each with K, = 1, and one honeycomb flow straightener
with Kj; = 0.3. The expansion downstream of the working section is in two parts. Each
expansion increases the area by a factor of 3, and each has a loss coefficient K, = 0.7 based
on the maximum velocity. The contraction upstream of the working section decreases the
area by a factor of 9, and it has a loss coefficient K, = 0.2 based on the maximum velocity.
Find the maximum flow velocity in the working section, which has a cross-sectional area of
0.7m?, assuming that there are no major losses and there is no heat transfer.

Solution: We apply the energy equation around the circuit, starting and ending in the
working section where the velocity is V. Hence
Wshaft

0= gh@,min -
m
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Figure 8.5: Control volume for diverging duct.

where Wsha ¢ is positive since the fan does work on the fluid. That is,

. —2

M = Kevf + (2K + K.) (V/3)2 + (2K, + 3K, + K},) (V/9)2 + KCV;
m 2 2 2
With p = 1.2 kg/m3, we obtain
1 117
Wehape = 1.2%x 0.7V | K, + K, + (2K, + K.) g+ @K+ 3K + Kn) o |

where V is measured in m/s. With Wpaf: = 60 x 0.8 kKW, we have

V =42m/s

Example 8.6: Energy equation applied to duct flow

An incompressible fluid flows steadily through a duct, as shown in Figure 8.5. The duct
has a width W. The velocity at entrance to the duct is uniform and equal to Vj, while the
velocity at the exit varies linearly to its maximum value, which is equal to V. Find the the
net enthalpy transport out of the control volume in terms of p, Vg, Q, W and H;, where Q
is the rate at which heat is transferred to the fluid.

Solution: Since the flow is steady and there is no shaft work (we will ignore the work done
by viscous forces), the energy equation (equation 3.25) becomes:

/(n~pV) (a+i+;v2+gz)dA =Q

Ignoring potential energy changes due to changes in height, and introducing the enthalpy
h =14+ p/p, we have

/(n~pV) (h+3V?) dA = Q
That is,
/(n-pV)hdA = net enthalpy flux = —/(n-pV) IVPdA+Q

The net rate of enthalpy transport out of the duct is given by the net rate of transport of
kinetic energy out of the control volume plus the net rate of heat transfer to the fluid in the
control volume. Since the entrance and exit areas are the only places where there is a flux,
the net enthalpy flux is given by

Hsy 2 .
— (—pVo) SVGWH, —/ <PV0 (Hy>> VE (I?;) Wdy +Q
0 2 2
Ho Yy 3 A
0 2

= LpVEWH; — LpViWH, + Q
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We can relate H; to Hs by using the continuity equation, where, for steady flow
/ n-pVdA = 0

(equation 3.11). That is,

Hy>
—pVOWH1+/ Vo <y> Wdy = 0
0 Hy

so that
H, = %HQ
Finally, .
net enthalpy flux = % PVEWH, +Q
Problems
8.1 Calculate the Reynolds number for pipe flow with diameter 12 mm, average velocity

50mm/s, and kinematic viscosity 1076 m?/s. Will the flow be laminar or turbulent?

8.2 Would you expect the flow of water in an industrial quality pipe of diameter 0.010 m
to be laminar or turbulent, when the average velocity was 1 m/s, and the kinematic viscosity
was 1076m?/s?

8.3 What is the likelihood that a flow with an average velocity of 0.15 ft/s in a 6 in.
water pipe is laminar? Find the speed at which the flow will always be laminar.

8.4 If the critical Reynolds number for a river is 2000 based on average velocity and
depth, what is the maximum speed for laminar flow in a river 10 ft deep? 2 ft deep? Do
you expect any river flow to be laminar?.

8.5 Find the Reynolds number for water at 15°C' flowing in the following conduits,
indicating in each case whether you expect the flow to be laminar or turbulent.

(a) A tube of 6 mm diameter with an average velocity of 10 em/s.

(b) A pipe of 20 cm diameter with an average velocity of 1m/s.

(¢) A tube of 2m diameter with an average velocity of 3m/s.

8.6 A given pipe first carries water and then carries air at 15°C and atmospheric pres-
sure. What is the ratio of the mass discharge rates and the volume discharge rates, if the
friction factors were the same for these two flows?

8.7 Two horizontal pipes of the same length and relative roughness carry air and water,
respectively, at 60°F'. The velocities are such that the Reynolds numbers and pressure drops
for each pipe are the same. Find the ratio of the average air velocity to water velocity.

8.8 Water flows steadily through a smooth, circular, horizontal pipe. The discharge
rate is 1.5 ft3/s and the pipe diameter is 6in. Find the difference in the pressure between
two points 400 ft apart if the water temperature is 60°F'.

8.9 A 2000-gallon swimming pool is to be filled with a 0.75in. diameter garden hose.
If the supply pressure is 60 psig, find the time required to fill the pool. The hose is 100 ft
long, with a friction factor equal to 0.02.



142 PROBLEMS Chapter 8

Py

650 m

3000m of 150mm diameter
straight pipe e, A

Figure P8.15

8.10 A hole in the bottom of a large open tank discharges water to the atmosphere. If
the exit velocity in the absence of losses is V., find the loss coefficient for the hole if the
actual velocity is V. /2. Assume turbulent flow.

8.11  Air enters a duct at a speed of 100m/s and leaves it at 200m/s. If no heat is added
to the air and no work is done by the air, what is the change in temperature of the air as
it passes through the duct?

8.12  Air enters a machine at 373°K with a speed of 200m/s and leaves it at 293°C. If
the flow is adiabatic, and the work output by the machine is 105 N - m/kg, what is the exit
air speed? What is the exit speed when the machine is delivering no work?

8.13  Two jets of air with the same mass flow rate mix thoroughly before entering a large
closed tank. One jet is at 400°K with a speed of 100m/s and the other is at 200°K with
a speed of 300m/s. If no heat is added to the air, and there is no work done, what is the
temperature of the air in the tank?

8.14 A basketball is pumped up isothermally using air that is originally at 20°C' and
1.05 x 10° Pa. As a result, the air is compressed to 20% of its original volume. If the mass
of air is 0.1 kg, find

(a) The final pressure;

(b) The work required;

(c) The changes in internal energy and enthalpy.

8.15 Figure P8.15 shows a pipeline through which water flows at a rate of 0.07m?3/s.
If the friction factor for the pipe is 0.04, and the loss coefficient for the pipe entrance at
point A is 1.0, calculate the pressure at point B.

8.16  Water flows from a large reservoir down a straight pipe of 2500 m length and 0.2m
diameter. At the end of the pipe, at a point 500 m below the surface of the reservoir, the
water exits to atmosphere with a velocity V. If the friction factor for the pipe is 0.03, and
the loss coefficient for the pipe entrance is 1.0, calculate V.

8.17  Figure P8.17 shows a pipeline connecting two reservoirs through which water flows
at a rate of gm?/s. The pipe is 700m long, it has a diameter of 50 mm, and it is straight.
If the friction factor for the pipe is 0.001 and the loss coefficients for the pipe entrance and
exits are 0.5 and 1.0 respectively, find ¢, given that the difference in height between the
surfaces of the two reservoirs is 100 m.

8.18 A pump is capable of delivering a gauge pressure p;, when pumping water of density
p. At the exit of the pump, where the diameter of the exit pipe is D and the velocity is V,
there is a valve with a loss coefficient of 0.6, as shown in Figure P8.18. At a distance 100D
downstream, the diameter of the pipe smoothly reduces to D/2. At a further distance 100D
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D =50 mm
L=700m

Figure P8.17
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Figure P8.18

downstream, the flow exits to atmosphere. The pipes are horizontal. Calculate the pressure
p1 in terms of the density p and V', when the friction factor f is taken to be constant and
equal to 0.01 everywhere.

8.19  Figure P8.19 shows a pipeline through which water flows at a rate of 0.06 m?/s.
The pipe is 3000m long, it has a diameter of 120 mm, and it is straight. If the friction
factor for the pipe is 0.03 and the loss coefficient for the pipe entrance is 1.0, calculate H,
the depth of the reservoir, given that the pipe exits to atmosphere.

8.20 A water tank of constant depth H, open to the atmosphere, is connected to the
piping system shown in Figure P8.20. After a length of pipe L of diameter D, the diameter
decreases smoothly to a value of D/2 and then continues on for another length L before
exiting to atmosphere. The friction factor f is the same for all piping. C'p; and Cps are the
loss coefficients for the entry and exit. Calculate the depth of the tank required to produce
an exit velocity of V.

8.21 A small gap is left between a window and the windowsill, as shown in Figure P8.21.
The gap is 0.15mm by 30 mm, and the width of the window is 1 m. The pressure difference
across the window is 60 Pa. Estimate the average velocity and the volume flow rate through
the gap. The air temperature is 0°C. Ignore minor losses.

8.22  For a constant mass flow rate, and a constant friction factor, show that the pressure
drop in a pipe due to friction varies inversely with the pipe diameter to the fifth power.

!
H
|

3000 m 0
of 120 mm diameter Sockm
straight pipe A

Atmospheric pressure

Figure P8.19
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8.23  (a) Simplify the Navier Stokes equation for steady, fully developed flow in the z-
direction between two infinite parallel plates, where one plate is held stationary and the
other is moving at a constant velocity Uy. The pressure is constant everywhere, and you
can neglect gravity.

(b) Find the equation for the velocity profile, given that the gap between the plates is h.

8.24  In fully developed two-dimensional channel flow of height 2k, the velocity profile is

described by
u 3 Y\ 2
= = = 1 - -
vV 2 ( (h) )

where y is the distance measured from the centerline, and V is the average velocity in the
channel. Express the viscous stress at the wall (that is, at y = +h) in terms of the fluid
viscosity p, V and h.

8.25  The laminar flow of a fluid with viscosity © and density p in a circular pipe of radius
R has a velocity distribution described by

v 1 2

Ucr (R)
where Ugp, is the velocity on the centerline where r = 0.
(a) Using a control volume analysis, find 7, the shear stress at the wall, in terms of R and
the pressure gradient dp/dz.
(b) Using the expression for the velocity profile, find 7,,, the shear stress at the wall, in
terms of u, R, and Ucqyp,.
(c) Find the average velocity U in terms of Ucy,.
(d) Using the results from parts (a)-(c), show that

(%) D 64
LUt Re
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where Re is the Reynolds number based on the diameter D.

8.26 A 0.5hp fan is to be used to supply air to a class room at 60°F through a smooth
air-conditioning duct measuring 6in. by 12in. by 50 ft long. Find the volume flow rate,
and the pressure just downstream of the fan. Use the concept of hydraulic diameter. State
all your other assumptions.

8.27  Water at 60°F is siphoned between two tanks as shown in Figure P8.27. The
connecting tube is 2.04n. diameter smooth plastic hose 20 ft long. Find the volume flow
rate and the pressure at point P, which is 8 ft from the entrance to the tube. Ignore minor
losses. (To begin, assume a friction factor, then iterate.)

8.28  Due to corrosion and scaling, the roughness height of a pipe k increases with its
years in service t, varying approximately as

k:k0+5t,

where kg is the roughness of the new pipe. For a cast iron pipe, ky =~ 0.26mm, and
€ 2 0.00001 m per year. Estimate the discharge (volume flow rate) of water through a 20 cm
diameter cast iron pipe 500 m long as a function of time over a 20-year period. Assume the
pressure drop is constant and equal to 150 kPa.!

8.29  Oil of kinematic viscosity v = 4 x 107 ft?/s at room temperature flows through
an inclined tube of 0.5in. diameter. Find the angle o the tube makes with the horizontal if
the pressure inside the tube is constant along its length and the flow rate is 5 ft2/hr. The
flow is laminar.

8.30  Water at 60°F flows at a rate of 300 ft3/s through a rectangular open channel that
slopes down at an angle «, as shown in Figure P8.30. The depth of the water is 5 ft, and
the width of the channel is 8 ft. The channel is made of concrete which has a friction factor

1 Adapted from John & Haberman, Introduction to Fluid Mechanics, Prentice Hall, 1988.
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Figure P8.33

f =0.02. Find the angle a.

8.31  You have a choice between a 3 ft or a 2 ft diameter steel pipe to transport 2000
gallons per minute of water to a power plant. The larger diameter pipe costs more but
the losses are smaller. What is the relative decrease in head loss if you choose the larger
diameter pipe? The kinematic viscosity is 1 x 107> f#?/s.

8.32 A farmer must pump at least 100 gallons of water per minute from a dam to a
field, located 25 ft above the dam and 2000 ft away. She has a 10hp pump, which is
approximately 80% efficient. Find the minimum size of smooth plastic piping she needs to
buy, given that the piping is sized by the half-inch. Use v = 1075 ft/s. Ignore minor losses.?

8.33 Under the action of gravity, water of density p passes steadily through a circular
funnel into a vertical pipe of diameter d, and then exits from the pipe, falling freely under
gravity, as shown in Figure P8.33. Atmospheric pressure acts everywhere outside the funnel
and pipe. The entrance to the pipe has a loss coefficient K7 = 0.5, the pipe has a friction
factor f = 0.01, and the exit from the pipe has a loss coefficient K5 = 1.0. The kinetic
energy coefficient o = 1. Find the outlet velocity in terms of g and d. You may assume that
D>d.

8.34  Determine the horsepower required to pump water vertically through 300 ft of
1.254n. diameter smooth plastic piping at a volume flow rate of 0.1 f£3/s.

8.35  Water flows with a volume flow rate of 100 liters/s from a large reservoir through
a pipe 100m long and 10 cm diameter which has a turbomachine near the exit. The outlet

2Adapted from Potter & Foss Fluid Mechanics, Great Lakes Press, Inc., 1982.
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is 10m below the level of the reservoir, and it is at atmospheric pressure. If the friction
factor of the pipe is 0.025, find the power added to, or provided by the turbomachine. Is it
a pump or a turbine? Neglect minor losses.

8.36  Repeat the previous problem for a volume flow rate of 10 liters/s.

8.37  Water at 10°C is pumped from a large reservoir through a 500m long, 50mm
diameter plastic pipe to a point 100 m above the level of the reservoir at a rate of 0.015m?/s.
If the outlet pressure must exceed 10% Pa, find the minimum power required. Neglect minor
losses.

8.38  The laminar flow of water in a small pipe is given by

U r\2
- ()
Umaa: R
where R = 0.5¢m is the pipe radius, and U,,q. = 20cm/s. Assume the temperature is
15°C.
(a) Find the wall shear stress.

(b) Find the pressure drop in a 10 em length of the pipe.
(c) Verify that the flow is indeed laminar.

8.39  The velocity distribution in a fully developed laminar pipe flow is given by

U 1 r\2

ver ~ 1 (%)
where Ugy, is the velocity at the centerline, and R is the pipe radius. The fluid density is
p, and its viscosity is .
(a) Find the average velocity V.
(b) Write down the Reynolds number Re based on average velocity and pipe diameter. At
what approximate value of this Reynolds number would you expect the flow to become
turbulent? Why is this value only approximate?
(c) Assume that the stress/strain rate relationship for the fluid is Newtonian. Find the wall

shear stress 7, in terms of 4, R and Ucr. Express the local skin friction coeffient C in
terms of the Reynolds number Re.

8.40 A fully developed two-dimensional duct flow of width W and height D has a
parabolic velocity profile, as shown in Figure P8.40.

(a) If w > D, show that the wall shear stress 7, is related to the pressure gradient dp/dx
according to dp/dx = —21,,/D.

(b) Express the pressure gradient in terms of the velocity on the centerline, the fluid viscos-
ity u, and the duct height D.

(¢) How does the z-component of vorticity vary with y?

8.41  Water of density p and viscosity p flows steadily vertically down a circular tube of
diameter D, as shown in Figure P8.41. The flow is fully developed, and it has a parabolic

velocity profile given by
(2
U D

where the maximum velocity is U. and the other notation is given in the figure.

(a) Find the shear stress acting at the wall in terms of the density p, the gravitational
constant ¢ and the diameter D.

(b) Express the kinematic viscosity in terms of D, U, and g.
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Figure P8.41

8.42 A thin layer of water of depth h, flows down a plane inclined at an angle 6 to the
horizontal, as shown in Figure P8.42. The flow is laminar, and fully developed (velocity
does not change in the x-direction).

(a) Find a theoretical expression for the velocity profile and for the volume flow rate per
unit width. Use the boundary condition that at the edge of the layer the shear stress is
Zero.

(b) If the flow is turbulent and the surface fully rough, find the volume flow rate in terms
of h, g, and f.

8.43  Consider the steady, laminar, fully developed flow of water of depth h down a plane
inclined at an angle 6 to the horizontal, as shown in Figure P8.43. The velocity profile is
quadratic, as shown, and the velocity at the free surface is U,. Show that U, = gh?sin/2v,
where v is the kinematic viscosity of water.

8.44  As shown in Figure P8.44, water flows from a large tank of depth 2m through a
square-edged entrance with a loss coefficient K1 = 0.5 to a pump that delivers a mass flow
rate . = 2.83 kg/s through a circular pipe of diameter D = 0.03 m, a length of 30 m, and a
friction factor of 0.01. The pipe exits to atmospheric pressure with an exit loss coefficient of

Fami
e e

T

Figure P8.42
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K3 = 1.0. Given that the density of water is 1000 kg/ m?, and the kinetic energy coefficient
a =1, find the power required to drive the pump, Wepqf:-

8.45 A water tank of constant depth H, open to the atmosphere, is connected to the
piping system, as shown in Figure P8.45. After a length of pipe L of diameter D, the
diameter decreases smoothly to a value of D/2 and then continues on for another length L
before exiting to atmosphere. The flow is turbulent and the friction factor f is the same for
all piping. Cp1 and C'po are the loss coefficients for the entry and exit. Calculate the depth
of the tank required to produce a mean exit velocity of V.

8.46 At a ski resort, water of density p flows through a pipe of diameter D and turbulent
flow friction factor f for a distance L from a large reservoir with a free surface elevation of
1500 m to a snow making machine at an elevation of 1400 m, as shown in Figure P8.46. K;
and Ky are the loss coefficients for the entry and exit, respectively, and along the way the
flow passes through 5 bends, each with a loss coefficient of Kj.

(a) Determine the exit velocity if D =0.1m, L = 100m, f =0.01, K1 = K = K3 = 1.0.
(b) Compare the computed exit velocity to the exit velocity if there were no losses.

P

p—
il

=
e
<

Figure P8.45
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(c) If a pump was put in the system to double the exit velocity, what is its required minimum
power (p = 1000 kg/m?)?

8.47  Water of density p flows from a large tank through a pipe of diameter D, length L,
and friction factor f, as shown in Figure P8.47. K5 and K3 are the loss coefficients for the
entry and exit, respectively, and towards the end of the pipe there is one bend with a loss
coefficient of K4. The flow in the pipe is turbulent. The exit from the pipe is a distance H
below the level of the water in the tank.

(a) Determine the exit velocity V3 if D = 0.05m, L = 10m, f = 0.01, Ky = K3 = K4, = 1.0,
and H = 1m.

(b) Under the conditions given in (a), find the height h to which the jet of water issuing
from the pipe rises above the exit.

(¢) If a pump was put in the system to increase h by a factor of 10, what is its required
minimum power (p = 1000 kg/m?3)?

8.48  Water of density p (= 1000 kg/m?) flows from a large tank through a pipe of
diameter D, total length L, and friction factor f, as shown in Figure P8.48. The loss
coeflicients for the entry and exit are K7 and K3, respectively, and along the length of the
pipe there are four bends each with a loss coefficient of K5. The flow in the pipe is turbulent.
The entrance to the pipe is a distance H below the level of the water in the tank.

(a) Determine the exit velocity V3 if D = 0.025m, L = 10m, f = 0.01, K; = Ky = K3 = 1.0,
and H =2m.

(b) Under the conditions given in (a), find the gauge pressure at the point 2 along the pipe
(p2g), where point 2 is at located at a distance L/2 along the pipe, at a height 2H above
the entrance to the pipe.

(c) If a pump was put in the system to double the flow rate, what is its required minimum
power?
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8.49  Water of density 1000 kg/m? is pumped from a sump tank up a distance of H before
exiting to atmospheric pressure, as shown in Figure P8.49. The entrance and exit have a
loss coefficient of K = 1. Each bend also has a loss coefficient of K, but the valve has a
loss coefficient of 2K. The pipe has a diameter D, L1 = Ly = 50D, and the friction factor
f =0.01. Find the power expended by the pump if the volume flow rate is 40 liters/s, given
that D = 50 mm, and H = 2m. Assume that the flow in the pipe is turbulent.

8.50 A large tank feeds a straight pipe that delivers water to a turbine, and then exits
to atmosphere, as shown in Figure P8.50. The friction factor f = 0.01, the length L = 100
m, the diameter of the pipe D = 0.1 m, the loss coefficients K; = Ko = 1, the water density
p = 1000 kg/m3, the water viscosity u = 15 x 1073 N.s/m?, the bulk velocity in the pipe
V =2 m/s, and the turbine develops 500 W.

(a) Do you expect the flow in the pipe to be turbulent or laminar?

(b) Find the height H.

8.51 A pump delivers water through the piping system which exits to atmosphere, as
shown in Figure P8.51. The friction factor f = 0.01, the overall length of the pipe L = 10
m, the diameter of the pipe D = 0.1 m, the loss coefficients K; = Ko = 1, the water density
p = 1000 kg/m3, the bulk velocity in the pipe V =4 m/s, H = 5 m, and the pump develops
750 W. Find the gauge pressure at the inlet to the pump, p;4.

8.52 A large tank feeds a siphon as shown in the figure. For the flow in the siphon, the
friction factor f = 0.01, the length of the siphon L = 1 m, and its diameter D = 0.01 m,
the loss coefficients K1 = Ko = K3 = K4 = 1, and the water density p = 1000 kg/m3.

(a) If there were no losses, what is the exit velocity of the siphon?

(b) Assuming the flow in the siphon to be turbulent, and taking into account all losses, what
is the actual exit velocity of the siphon?
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turbine
Figure P8.50

pump
Figure P8.51

(c) If a pump was added somewhere in the siphon, and taking into account all losses, what
would be the output power of the pump if the exit velocity was seen to double?

K, K-
—  — — S B
K
H
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Figure P8.52



Chapter 9

Viscous External Flows

9.1 Study Guide

e Describe what is meant by the term “boundary layer.” Illustrate your answer using a
diagram.

e A laminar boundary layer is observed to grow on a flat plate of width w and length
L such that the pressure and the freestream velocity U, is constant everywhere. The
total skin friction coefficient Cr is defined according to

oro i B
spUZwL

Here, F' is the total frictional force acting on one side of the plate, and p is the

fluid density. By using the momentum equation and the continuity equation, find

the relationship between C'r and the momentum thickness 6 for an arbitrary velocity

profile. Indicate all your assumptions.

e What is the definition of the displacement thickness? Momentum thickness? Shape
factor? Give physical interpretations for these parameters.

e Give brief physical explanations and interpretations of the following terms:
(a) The 99% boundary layer thickness.
(b) The boundary layer displacement thickness §*.
(¢) The boundary layer momentum thickness 6.

e Describe the differences between laminar and turbulent boundary layers in terms of:
(a) The velocity profile.
(b) The frictional drag.
(¢) The behavior in adverse pressure gradients (that is, the tendency to separate).

e Consider the differences between a laminar and a turbulent boundary layer in a zero
pressure gradient. If the boundary layer thickness was the same: (a) Sketch the
velocity profile for each flow. (b) Which flow has the higher wall shear stress? Why?
(c) How do these observations explain why a dimpled golf ball can travel further than
a smooth golf ball?

e Draw the flow around a typical power plant smoke stack. Identify the laminar and
turbulent boundary layers, the points of separation, the separated flow, the vortex
shedding, and the freestream flow.

153
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e Consider a laminar and a turbulent boundary layer at the same Reynolds number.
(a) How do the velocity profiles compare?
(b) Which boundary layer grows faster?
(¢) Which boundary layer has the larger ratio of displacement thickness to momentum
thickness (6*/6)?
(d) When subjected to the same adverse pressure gradient, which boundary layer will
separate sooner?

9.2 Worked Examples

Example 9.1: Boundary layer flow

A flat plate 10 ft long is immersed in water at 60°F, flowing parallel to the plate at 20 ft/s.
The boundary layer is initially laminar, then transitions to turbulent flow at Re, = 10°.
(a) Find the approximate boundary layer thickness at x = 5 ft and = = 10 ft, where z is
measured from the leading edge.

(b) Find the total drag coefficient Cr. (c¢) Find the total drag per unit width of the plate
if the water covers both sides.

Solution: First, we need to know where transition is likely to occur. The boundary layer
is laminar for Re, < 10°, so that

v x 10° 1.21
= " ft = 0.73in.
U, 50 7/ m

We see that the region of laminar flow is very short, and we can assume that the boundary
layer is turbulent from the leading edge on.

For part (a), we use the power law approximation for turbulent boundary layer given by
equation 9.22. For x =5 ft

zU, 5x 20
P = = ——— " =826 x 10°
Fe v 121x10-5  o26x 10
and
0 0.37
— = —— = 0.0153
x  Rel?
so that

5 = 0.0765 ft = 0.92in.

For x = 10, ft, Re, = 16.5 x 105, and § = 0.133 ft = 1.60in. Note how thin the boundary
layer is compared to the development length z.
For part (b), the total drag coefficient is given by equation 9.21, so that

0.074
Cr=—-5
Rel-2
With L = 10 ft, Rey, = 16.5 x 105, and Cr = 0.00266.
For part (c), we have a total viscous force acting on the plate equal to 2F,, where F, is
the force acting on one surface. From the definition of the total drag coefficient, the total
drag on the plate per unit width is given by

2F,

v ! t2 Ib
S = PUZLCE = 1.938 Sugs / !

1o x 400 o x 10 ft x 0.00266 [by = 20.6 I
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Example 9.2: Vortex shedding

In an exposed location, telephone wires will “sing” when the wind blows across them. Find
the frequency of the note when the wind velocity is 30 mph, and the wire diameter is 0.25 in.
For air, we assume that v = 15 x 107 m?/s.

Solution: First we need to know the Reynolds number, Re, where

VD
Re = —
v
- (30% x 5280LL x 1272 x 0.0254 2% x ﬁ’i) (0.25in. x 0.0254,™)
B 15 x 10-67

= 2774.

From Figure 9.12, we see that at this Reynolds number the Strouhal number is approximately

equal to 0.21. That is,

fD
t="7 =021
S % 0

so that

21
v

mi ft in. m L_hr
(021 x 302 x 5280.LL x 128 x 0.0254.2 x b lr)

= H
0.25in. x 0.0254 2% ‘

— M4 Hz
which is very close to the note middle A (above middle C) (= 440 Hz).

Example 9.3: Drag of a submarine model

A submarine has the shape of an 8:1 ellipsoid. Find the power required to maintain a
velocity of 20 ft/s when it is fully submerged under water. The sea water temperature is
68°F. The submarine has a frontal area of 50 ft2, and a drag coefficient Cp = 0.15.
Solution: The drag coefficient is given by
Fp
Cp = ——
b= Ipv24

(equations 3.3 and 7.12), where A is the cross-sectional area of the body, and Fp is the drag
force acting on the body. Hence

FD = %pV2ACD

The density of sea water at 68°F is 1,025 kg/m?, that is, 1.989 slug/ft> (Table 1.2). There-
fore
Fp = 3 x1.989slug/ft* x 400 ft*/s* x 50 ft* x 0.151b; = 29831b;

The power required to overcome the drag is the work done per unit time, that is, the drag
force times the velocity of motion. Therefore

power required = Fp xV = 2,983 x 20 ft-lbs/s = 59,700 ft-1bs/s

1.341 hp
737.5 ft-lbs/s

59,700 ft - Ibs/s = 108 hp
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Problems

9.1 The flow over a leaf is being studied in a wind tunnel. If the wind blows at 8 mph,
and the leaf is aligned with the flow, is the boundary layer laminar or turbulent?

9.2 For steady, fully developed flow of a constant property fluid in a two-dimensional,
rectangular duct of height 2h the velocity profile is parabolic. Find the ratio of the displace-
ment thickness 0* to the half-height A (assume you can put the freestream velocity equal to
the maximum velocity, and h equal to the boundary layer thickness).

9.3 For the boundary layer velocity profile given by:

u Y

-7 <$

o= W=9

Find the wall shear stress, the skin friction coefficient, the displacement thickness, and the
momentum thickness.

9.4 (a) A laminar pipe flow is described by a parabolic velocity profile. The fluid has
viscosity p and a density p. The coordinate y is measured from the centerline of the pipe.
The velocity profile is described by
2
Lo {1 - (%) ]
\% R

where R is the pipe radius and V is the average velocity. Find the viscous stress at the wall
Tw and express it non-dimensionally in terms of a skin friction coefficient and the Reynolds
number based on diameter and average velocity.

(b) Given the velocity profile in part (b), calculate the displacement thickness and the
momentum thickness, using the centerline velocity instead of the freestream velocity.

9.5 Consider fully developed, steady flow of a constant density Newtonian fluid in a
circular pipe of diameter D, as shown in Figure P9.5.

(a) Show that the pressure gradient dp/dx = 41,,/D, where 7, is the viscous shear stress at
the wall.

(b) If the velocity distribution is triangular, find the average velocity V at any cross section,
and express the skin friction coefficient

Tw
Cr=—%
v’
in terms of the Reynolds number based on V.
9.6 A rectangular duct of height ~ mm and width w mm carries a flow of air of density
¥ Uly) = U (1 - 33-)
b " D
\‘ \
|
I 0 x
i
7

Figure P9.5
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p, and viscosity p. The velocity profile is quartic, so that

Uy (Y
Un h
where U, m/s is the maximum velocity, which occurs on the centerline where y = 0.
(i) Find the skin friction coefficient Cy = 7,/(3 pUpm?), where 7, is the shear stress at

the wall of the duct, in terms of u, U,, and h.
(ii) Express Cy in terms of the Reynolds number based on Uy, and h.

9.7 In laminar flow, the growth of the boundary layer thickness § with distance down-

stream x is given by
) K

x v Re,

where Re, = zU. /v, v is the fluid kinematic viscosity, U, is the freestream velocity, and K
is a constant.

(a) Given that the velocity profile is described by U/U, = y/é, find the growth of the
displacement thickness, and the momentum thickness with downstream distance.

(b) What is the shape factor H?

9.8 A constant density, constant pressure laminar boundary layer is growing on flat
plate of width W in a stream of velocity U, as shown in Figure P9.8. Show that the total
drag force F acting on the plate is given by F/pU26W = (4 —7)/27 when the velocity
profile is given by

%zsin(%) for %gl

9.9 For the boundary layer profile given in the previous problem, show that the dis-
placement thickness 6* = §(1 — 2/7).

9.10 A laminar boundary layer is formed on a flat plate of width w and length L in a zero
pressure gradient. The fluid has viscosity p and a density p. The coordinate = is measured
from the leading edge, and the coordinate y is measured from the wall. The velocity profile

is described by
2
7 =(3)+(5)

where § is the boundary layer thickness and U, is the freestream velocity.
(a) Find the constants a and b by using the definition of the boundary layer thickness and
given that
_ 3uU.
Y
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Figure P9.11

where 7, is the shear stress at the wall.
(b) For the flow described in part (a), find the total viscous drag exerted on one side of the
plate in terms of w, L, u, p, ¢, and U, given that

) c

T v Re,

where Re, is the Reynolds number based on x.
(c) For the flow described in part (a), find the displacement thickness 6*.

9.11  Consider the two-dimensional, laminar, fully developed flow of water of depth ¢
down a plane inclined at an angle 6 to the horizontal, as shown in Figure P9.11. The
velocity profile may be assumed to be linear, and the velocity at the free surface is V.
(a) Find the shear stress at the wall by

(i) Using a control volume analysis.

(i) Using the given velocity profile.
(b) Express the skin friction coefficient C in terms of

(i) the angle 0, and a Froude number based on ¢ and V.

(ii) the Reynolds number based on ¢ and V.

9.12  For a turbulent boundary layer velocity profile given by u/U, = (y/8)"/?, where U,
is the freestream velocity and ¢ is the boundary layer thickness, calculate the displacement
thickness, the momentum thickness, and the shape factor.

9.13 A flat plate 1m long and 0.5m wide is parallel to a flow of air at a temperature of
25°C'. The velocity of the air far from the plate is 20m/s.

(a) Is the flow laminar or turbulent? (b) Find the maximum thickness of the boundary
layer.

(c) Find the overall drag coefficient C'r, assuming that transition occurs at the leading edge.
(d) Find the total drag of the plate if the air covers both sides.

9.14  Repeat problem 9.13 for the case where the fluid is water at 15°C, assuming the
Reynolds number is kept constant by changing the freestream velocity.

9.15  Air at 80°F flows over a flat plate 6 ft long and 3 ft wide at a speed of 60 ft/s.
Assume the transition Reynolds number is 5 x 10°.

(a) At what distance from the leading edge does transition occur?

(b) Plot the local skin friction coefficient Cy = 7,,/(3pV?) as a function of Re, = Ucz/v.
(c) Find the total drag of the plate if the air covers both sides.

9.16 Find the ratio of the friction drags of the front and rear halves of a flat plate
of total length ¢ if the boundary layer is turbulent from the leading edge and follows a
one-seventh-power law velocity distribution.
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9.17  For a particular turbulent boundary layer on a flat plate, the velocity profile is
given by u/U, = (y/8)"/7, where u is the streamwise velocity, U, is the freestream velocity
and ¢ is the boundary layer thickness. Given that the boundary layer thickness grows as in
equation 9.22:

(a) Find the distribution of the vertical velocity component v(y).

(b) Calculate the angle the flow vector makes with the flat plate at y/6 = 0.05, 0.2, and 0.8
at Re, = 109.

9.18 A turbulent boundary layer on a flat plate of length L and width w has a velocity
distribution described by

U (y)l /7

U, \§

where U, is the freestream velocity, y is the distance measured normal to the plate, and §
is boundary layer thickness.
(a) Using a control volume analysis, find & such that

Fp 0

pU2wl L

Here Fp is the total viscous force acting on the plate, and p is the fluid density. Assume
that the pressure is constant everywhere.
(b) Using the result from part (a), show that

s Ty
de ~ kpU?2
where 7, is the wall shear stress.
(¢) Hence find 7,, given that
5 037
© R

9.19  Air enters a long two-dimensional duct of constant height h, as shown in Fig-
ure P9.19. Identical boundary layers develop on the top and bottom surfaces. In the core
region, outside the boundary layers, the flow is inviscid and no losses occur. The flow is
steady and the density is constant.

(a) Show that
U h
Ui h—26*
where 0* is the displacement thickness at station 2.
(b) Given the information in part (a), find the pressure drop between stations 1 and 2 along

the central streamline.

9.20 In the previous problem, if you were given that velocity u at station 3 varied with
y according to:
2
N
i (%)

(a) What is the distribution of the viscous stress, and what is its value at the wall?
(b) What is the distribution of the z-component of vorticity, and what is its value at the
wall?

9.21 A laminar boundary layer velocity profile may be described approximately by
u/U, = sin(my/26). Find the shear stress at the wall, 7,,, and express the local skin friction
coefficient Cy = 7,/($pU?) in terms of a Reynolds number based on U, and 4.
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Figure P9.19

9.22  Consider the entrance section to a circular pipe of diameter D. The incoming
velocity is constant over the area and equal to Uy, as shown in Figure P9.22. Downstream,
however, a boundary layer grows and this causes the flow in the central region to accelerate.
The flow has a constant density p. Find Us/U; given that 6* = D/16 at station 2. (Note
that 6 << D)

9.23  Assuming that the velocity profile in a laminar boundary layer of thickness § is

given by ,
o =2(5) - (5)

where u is the velocity at distance y from the surface and U, is the freestream velocity (as
shown in Figure P9.23), demonstrate that

0 31 . Tw  Av
s om0 M YT L T s

where ¢ is the momentum thickness, 7, is the viscous stress at the wall, C is the local skin
friction coefficient at a distance x from the leading edge of the plate, p is the density and v
is the kinematic viscosity.

9.24  (a) For the laminar velocity profile given by

Ei(y)f}(y)?’

U 2\6/ 2\§

where U, is the freestream velocity and § is the boundary layer thickness, find the displace-
ment thickness ¢*, the momentum thickness 6, and the shape factor H.

(b) What is the relationship between the total drag force on a flat plate Fp, and the mo-
mentum thickness § measured at the downstream end of the plate?

Station 1 Station 2

ter)

Bunda layer
Figure P9.22
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(¢) Compare and contrast the general attributes of laminar and turbulent boundary layers
on a flat plate (4 points).

(d) Compare and contrast the behavior of laminar and turbulent boundary layers in an
adverse pressure gradient (4 points).

9.25  For two-dimensional, constant pressure, constant density, laminar flow over a flat
plate, the boundary layer velocity profile is crudely described by the following relationship:

Uie = % for y<é6
where u is the velocity parallel to the surface, U, is the (constant) freestream velocity, y is
the distance normal to the surface, and ¢ is the boundary layer thickness.
(a) Evaluate df/dz, where 6 is the momentum thickness, and = is the distance along the
surface measured from the leading edge of the plate, in terms of the boundary layer growth
rate.
(b) Evaluate the skin friction coefficient Cy.
(c) Using the results from parts (a) and (b), show that 6 grows as v/x.

9.26 A laminar boundary layer is observed to grow on a flat plate such that the pressure
is constant everywhere. If the boundary layer velocity profile is given by:

3
o3 (5)-3(5) wrowss
where u is the velocity at a distance y from the surface, § is the boundary layer thickness
and U, is the freestream velocity.

(a) Show that /5 = 0.139, where 6 is the momentum thickness.

(b) Find the viscous stress on the plate in terms of the viscosity, the boundary layer thickness,
and the freestream velocity.

9.27 A laminar boundary layer is observed to grow on a flat plate such that the pressure
is constant everywhere. If the boundary layer velocity profile is given by:

U 3y 1 /y\3

£-3-10
(for y < §), where U is the velocity at a distance y from the surface, § is the boundary layer
thickness and U, is the freestream velocity.
(a) Find the viscous stress on the plate 7, (the local wall shear stress) in terms of the
viscosity p, the boundary layer thickness d, and the freestream velocity Ul,.
(b) Express the answer to part (a) in terms of non-dimensional parameters (that is, in terms
of the skin friction coefficient and the Reynolds number based on 9).
(c) Find the ratio of the displacement thickness to the boundary layer thickness (this is a
number).
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9.28  (a) If the boundary layer velocity profile for y < § is given by

where U is the velocity at a distance y from the surface, § is the boundary layer thickness
and U, is the freestream velocity.

(i) Find the ratio of the displacement thickness to the boundary layer thickness (this is
a number).

(ii) Find the ratio of the momentum thickness to the boundary layer thickness (this is a
number).
(b) Air enters a two-dimensional duct with a uniform velocity profile. As the boundary
layers on the top and bottom walls grow with downstream distance, the velocity in the
freestream tends to increase. However, if the walls diverged with downstream distance so
that the freestream velocity remained constant, express the angle of divergence of the walls
in terms of the boundary layer displacement thickness §* and the distance along the duct
x.
(¢) A laminar boundary layer is observed to grow on a flat plate of width w and length
x = L such that the pressure is constant everywhere. If the skin friction coefficient C is
given by:
;= 0.654

v Re,

By integrating the shear stress on the surface, find the frictional force coefficient Cr as a
function of the Reynolds number based on L, where Cp is defined according to:

F
OF = T 772, 7
spUZwL
Here F is the total frictional force acting on one side of the plate, p is the fluid density, and
U. is the freestream velocity.

9.29 A ship 200 ft long with a wetted area of 5000 ft> moves at 25 ft/s. Find the friction
drag, assuming that the ship surface may be modeled as a flat plate, and p = 1.94 slugs/ ft3
and v = 1.2 x 107° ft?/s. What is the minimum power required to move the ship at this
speed?

9.30  For the flow over a body completely immersed in a fluid, what is meant by the terms
“pressure drag” and “viscous drag”? Using these terms, explain the difference between a
“bluff” body and a “streamlined” body.

9.31  The vehicle shown in Figure P9.31 has a circular cross-section of diameter D, and
it is traveling at a velocity U in air with a density of p and a viscosity u. It has a total drag
coefficient Cp, given by

Fp
CD == T 7797 2
U5 D?

where Fp is the total drag force. The skin friction coefficient is given by

o Tw _ 0.37

T=T07 ~ Reb?
where 7, is the viscous stress, Re, = 2U/v, and z is the distance along the vehicle surface.
Find the ratio F,,/Fp in terms of Cp, the Reynolds number based on the length L, and the
aspect ratio L/ D, where F, is the total viscous force exerted over the surface of the vehicle.
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X
Figure P9.31

9.32  Explain why dimples on a golf ball help to reduce drag.

9.33  Pylons supporting a bridge over a fast-flowing river often have footings (the part of
the pylon below and just above the water level) shaped like a wedge, both in the upstream
and downstream direction. Why do you think this is done?

9.34 A disk 15 cm in diameter is placed in a wind tunnel at right angles to the incoming
flow. The drag of the plate is found to be 3.2 N when the air velocity is 20m/s and the air
temperature is 25°C'. Using this information, estimate the drag of a disk 40 ¢m in diameter
in a water flow having a velocity 5m/s at a temperature of 15°C.

9.35 A rectangular banner 2 ft high by 10 ft long is carried by marchers in a parade that
is moving at 2mph. A 30mph wind is blowing. If the air density is 2.4 x 1073 slug/ ft3,
find the maximum force exerted on the banner by the wind. Estimate how many marchers
it might take to hold the banner safely.

9.36 Air flows over a 60 ft high circular smoke stack at a uniform speed of 30 mph. Find
the total force acting on the stack if its diameter is 6 ft and the air temperature is 70°F'.

9.37 A 0.5in. diameter cable is strung between poles 120 ft apart. A 60 mph wind is
blowing at right angles to the cable. Find the force acting on the cable due to the wind.
The air temperature is 40°F'.

9.38 A beach ball 20 ¢m in diameter traveling at a speed of 50m/s in still air at 30°C
is found to have a drag of 8 N.

(a) Find the velocity at which the drag of a 60 ¢cm sphere immersed in water at 15°C' can
be found from the above data.

(b) What is the drag of the larger sphere at this velocity?

9.39 (a) Find the aerodynamics drag force on a car traveling at 75mph if the drag
coefficient is 0.4 and the frontal area is 24 ft2.

(b) Find the maximum possible speed of a minivan, on the level with no wind, if it has
a frontal area of 30 ft2, a drag coefficient of 0.6 and a 120-horsepower engine that is 80%
efficient. How will this speed change if there is a 30 mph headwind?

9.40 A spherical dust particle of density p, and radius R falls at a constant velocity V'
in an atmosphere of density p, under its own weight. Find V if p,/p, = 1000, R = 0.5 mm,
and the drag coefficient Cp = F/(0.5paV?mR?) = 1, where F is the drag force acting on
the sphere. Ignore the buoyancy force.

9.41 A spherical rain drop of diameter D falls at its terminal velocity V in air of density
pq and viscosity p,. The raindrop has a drag coefficient given by
Fp 24

T L) Re

where Fp is the drag force acting on the drop and Re is the Reynolds number based on the
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drop diameter. What is V when p, = 1.2 kg/m?, p, = 18 x 1075 N.s/m?, and the density
of water p,, = 1000 kg/m3? The volume of a sphere is given by wD3/6. State all your
assumptions.

9.42 A skydiver of mass 75 kg is falling freely, while experiencing a drag force due to air
resistance. If her drag coefficient is 1.2, and her frontal area is 1m?, and assuming standard
atmospheric conditions, find her terminal velocity at 10°C.

9.43  Find the terminal velocity of a parachutist, assuming that the parachute can be
modeled as a semicircular cup of diameter 6 m. Use standard atmosphere properties of air
corresponding to an altitude of 3000 m. The total mass of the person and parachute is 90 kg.

9.44  Find the terminal velocity of a steel sphere of density 7850 kg/m?3 and diameter
0.5 mm diameter, falling freely in SAE 30 motor oil, which has a density of 919 kg/m? and
a viscosity of 0.04 N - s/m?.

9.45 A bracing wire used on a biplane to strengthen the wing assembly is found to vibrate
at 5000 H z. Estimate the speed of the airplane if the wire has a diameter of 1.2mm. If the
natural frequency of the wire is 500 H z, at what speed will the wire vibration resonate?
9.46  An automobile radio aerial consists of three sections having diameters % n., 1—36 n.,
and %in. Find the frequency of the vortex shedding when the car is traveling at 35 mph
and 65 mph.

9.47  For problems 9.36 and 9.37 find the vortex shedding frequency. Estimate the wave-
length between successive vortices.



Chapter 10

Open Channel Flow

10.1  Study Guide

e What is the propagation speed of a small planar disturbance in a shallow water basin?

e Write down the speed of a small amplitude gravity wave in shallow water. Use this
result to describe qualitatively the formation of a breaking wave on a beach. How
does the slope of the beach affect the formation of this wave?

e For open channel flow, name one mechanism by which the flow can become supercrit-
ical, and one mechanism by which the flow can become subcritical.

e Write down the definition of Froude number. Give two physical interpretations for its
significance.

e Water flows over a rock in a river, and near the crest of the rock the water level
is seen to go down. Is the upstream Froude number subcritical or supercritical? If
downstream of the rock there is a hydraulic jump, what can you say about the Froude
number downstream of the rock and before the hydraulic jump?

Summary of flow in a constriction without losses:

1. When F < 1 everywhere, the water level drops in the converging part, and rises in
the diverging part. The Froude number first increases, and then decreases.

2. When F' > 1 everywhere, the water levels rises in the converging part, and falls in
the diverging part. The Froude number first decreases, and then increases.

3. F' =1 only at the throat.

4. The downstream solution is indeterminate when F' = 1 at the throat. However,
when there are no losses, only two possibilities exist: a supercritical solution and a
subcritical solution. These solutions are independent of the upstream conditions, and
depend only on the downstream conditions. In particular, they correspond to two
special values for the downstream depth. If the downstream conditions require that
the downstream depth be different from these special values, hydraulic jumps will
appear and losses will occur.

5. Remember: hydraulic jumps can only occur at places where the hydraulic jump
relationship is satisfied. That is, jumps occur where the Froude number is such that
the change in height due to the jump is of the “right” value. Downstream of the jump,
F < 1, and the water surface will continue to rise as the channel expands.

165
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Figure 10.1: Partially opened sluice gate.

10.2  Worked Examples

Example 10.1: Flow under a sluice gate

Water flows steadily under a partially open gate of width W, as shown in Figure 10.1. The
flow in the vicinity of the gate is complicated but at some distance upstream of the gate,
the streamlines are initially straight and the water depth is Y;. Some distance downstream
of the gate, the streamlines are again straight and the water depth is Y5/Y; = 0.5. If there
are no frictional effects on the flow, that is, the water flows smoothly through the gate and
there are no losses:

(a) What is F, the Froude number of the upstream flow?

(b) Show that the flow downstream of the gate is supercritical.

Solution: From mass conservation
Viviw = LY, W

It is generally a good idea to nondimensionalize the equations. Multiplying and dividing
the left hand side of the continuity equation by 1/gY1, and the right hand side by v/gYa, we

obtain
Vi Vs
— V1 gY1 = ———Y5\/gY-
vom VT Y
That is,
Y2\ ?
F? = F} (Y1> (10.1)

To find Fi, we need to know something about Fy. Since there are no losses, we could use
Bernoulli’s equation along the surface streamline. This may seem somewhat of a stretch, in
that the surface streamline takes two sharp corners and is in contact with a solid surface.
However, if we assume that the losses are small, and the flow is steady, then along the
surface streamline

%Vf +gY7 = %‘/22 +gYo
Non-dimensionalizing by dividing through by gY7, we get

V2 1 - VEYy Y,

2971 A TR

['hat is,
Ys Y5 Y;
172 177272 2 2 (12
I +1 = 5F27Y1+71 751 (§F2+1)
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Eliminating F5 by using mass conservation (equation 10.1) gives

Y: vi\?
172 2 (12 1
and by collecting terms
2 2- 2%
Fy = !
()~
2
Since Y2/Y; = 0.5,
1
Fl - ﬁ
In addition, from equation 10.1
B = F (“)3/2 8
2 = |+ =13
Y, 3

so that the upstream Froude number is subcritical, and the downstream Froude number is
supercritical.

Example 10.2: Force on a sluice gate

For the gate shown in Figure 10.1, find the force required to hold the gate fixed. Express
the result nondimensionally.

Solution: The force R required to hold the gate fixed is shown in the figure as acting in the
negative z-direction. Therefore the force exerted by the fluid on the gate is R, and the force
acting on the fluid is —R. We also have the force due to differences in hydrostatic pressure,
similar to that considered in the analysis of the hydraulic jump (Section 10.7). Therefore,
the z-component momentum equation becomes, for one-dimensional flow,

L PIVIW pgYPW
2 2

-R = —pVEVIW + pVEYoW

where friction has been ignored. By dividing through by pV2Y; W, and by substituting for
V5 from the continuity equation, we obtain

R gY? 9Ys - 1+ V3Ys _ VY

COVELW * 2VZY,  2V2Y, VY, V2Y1Y,

R 1 Y$ Y1>
——=— (1= ) +2(1 - —
g~ 7 (17 ve) 2 (1

Example 10.3: Flow over a bump

Hence

Water flows from left to right in an open channel of constant width, as shown in Figure 10.2.
The flow becomes supercritical as it passes over a bump of height H. It remains supercritical
for some distance downstream, reaching a maximum Froude number of 1.83 at station 3. It
then becomes subcritical by means of a hydraulic jump.

(a) Find the nondimensional water depth at the throat (Y2/Y7).

(b) Find the nondimensional height of the bump (= H/Y7).

(¢) Find the nondimensional water depth before the hydraulic jump (= Y3/Y7).

(d) Find the nondimensional water depth after the hydraulic jump (= Y,/Y1).
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Solution: For part (a), we use mass conservation:
iYr = 12Y,
Non-dimensionalizing, as we have done a number of times, we obtain

A%
F} =F3 <Y1> (10.2)
We are given that F; = 0.5 and F» = 1, so that
Y,
— =0.63
Y1

For part (b), Bernoulli’s equation can be used along the surface streamline in the region
where there are no losses. Between stations 1 and 2, therefore

WP+ g = SVP 4+ g (Yo + H)

Non-dimensionalizing by dividing through by gY7, we obtain

Yo Y- H
1p2 ¢ _ 1p272 , 22, 2%
S R R D
Hence
125 = 22 H
2y, Vi
and "
— = 0.180
Y

Since F; = 0.5 and F3 = 1.83,

For part (d), we use the hydraulic jump relationship (equation 10.9), so that

vy, 1 . B
v - 2<\/1+8F3 1) = 2.136

Y, V.Y
B4 M5 9360421 = 0.899
Y, V.Y, x

S Hence

Figure 10.2: Flow over a bump.
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Figure 10.3: Bore traveling upstream in a river.

Example 10.4: Moving hydraulic jump

Water flows in a rectangular channel at a depth of 1 ft and a velocity of 10 ft/s. When a
gate is suddenly placed across the end of the channel, blocking the entire flow, a bore travels
upstream with velocity Vj, as indicated in Figure 10.3. Find V}, when the depth of the water
behind the bore is 3 ft.

Solution: To use the hydraulic jump relationship (equation 10.9), we need to move in a
frame of reference where the flow is steady. This is accomplished by moving with the bore.
Relative to the bore, the incoming water velocity is V, + 10 ft/s, and the incoming Froude
number Fj is given by

Vy +10

V322 x1

where V}, is in ft/s. From the hydraulic jump relationship (equation 10.9), we obtain

Y, 1 \/7
2 - ~(J1+8F2 -1
Y1 2( o )

=

so that
2Y, 2
8F2 = (== +1
1 < v, )
Hence
(Vs +10)
8 ——~- =148
V32.2
and
Vi, =3.90 ft/s
Problems

10.1  Calculate the Froude angle for a flow of depth 0.102m moving at 2m/s.

10.2  Determine the minimum depth in a 3m wide rectangular channel if the flow is to
be subcritical with a flowrate of 30 m?/s.

10.3  Estimate the speed of a tsunami as it travels across the Pacific Ocean, given that
the average depth of the water is about 2000 m. State your assumptions.
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10.4  Consider a small amplitude gravity wave moving at a speed c¢,, from left to right
into a shallow basin of depth y, as shown in Figure P10.4. The water in this basin is moving
from right to left at speed U.

(a) Find the wave speed ¢, in terms of y and U, stating all your approximations clearly.
(b) What happens when the Froude number based on y and U equals one?

10.5  To find the drift velocity dv for a small amplitude gravity wave, the linear analysis
given in Section 10.2 is not sufficient. By repeating the same analysis without linearization,
show that

2 (02 — gy)

o~
v 3c

10.6  As an open channel flow enters a smooth constriction, the water level is observed
to fall. What can you say about the upstream Froude number?

10.7  Water flows in a channel and passes over a bump on the channel floor. The water
level is seen to decrease and stay low. What can you say about the upstream and downstream
Froude numbers?

10.8  Consider the one-dimensional open channel flow shown in Figure P10.8.
(a) Using the continuity principle and Bernoulli’s equation, show that
dy 1 dh

dr ~ F?2—1dx

where F' is the local Froude number.
(b) Discuss the implications of this result for subcritical flow everywhere, supercritical flow
everywhere, and for F' =1 at station 2.

10.9 A rectangular channel has a contraction that smoothly changes the width to a
minimum width of 1.5 ft (the throat). If the flow is critical at the throat, find the volume
flow rate when the depth at the throat is 1.5 ft.

10.10 Water in an open channel of constant width flows over a bump of height 1 ft, as
shown in Figure P10.10. What is the depth of the water Y57 Assume uniform flow of
constant width with no losses.

10.11 Water flows smoothly over a small bump in a channel of constant width, as shown
in Figure P10.11. At any cross-section the velocity may be considered constant over the
entire area. If V; is the velocity at entry, where the depth is Y7, and V5 is the velocity where
the bump has its highest point, where the depth is Y5. If Y7 /Y, = 1.8, find

(a) The Froude number of the flow at entry.

(b) The Froude number at the top of the bump.

10.12 Water in a two-dimensional channel flows smoothly over a submerged obstacle of
height H as shown in Figure P10.12. The water depth at the peak of the obstacle is Y5,

Figure P10.4
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Station 1 Station 2
Figure P10.8

Figure P10.10

where Yy = Y7/3.

(a) Find the value of the Froude number of the incoming flow, Fj, given that the Froude
number is unity at the point where the depth is Y5.

(b) Find the nondimensional height of the obstacle, H/Y7.

10.13 Water in a two-dimensional channel flows over a bump, as shown in Figure P10.13.
If Hy/H; = 1/4, find the Froude numbers at entry and exit, F} and Fs.

10.14 For the flow shown in Figure P10.14,

(a) Find the Froude number at station 1, where the water exits the tank.

(b) Find the water depth at station 2 in terms of hy and hso, given that the Froude number
at station 2 is one.

10.15 A smooth transition section connects two open channels of the same width, as
shown in Figure P10.15. The water depth decreases so that the ratio of the downstream to
upstream depths Y5/Y; = 0.5. If the upstream Froude number F; = 0.35, determine the
downstream Froude number F», and the ratio h/Y;.

10.16 An exit of width W allows water to flow from a large tank into an open channel of
the same width, as shown in Figure P10.16. The depth of water in the tank is maintained
constant at H, which is large compared to hq, where h; is the depth of the water at the exit.
As the water flows smoothly over a bump of height b, the depth increases so that the ratio
hs/h1 = 4. There are no losses anywhere. Show that the Froude number F} is supercritical.
Use Bernoulli’s equation and continuity to find the numerical value of F; and the ratio b/h;.

Water surface

Atmospheric pressure

Figure P10.11
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Figure P10.13

10.17 A smooth transition section connects two rectangular channels, as shown in Fig-
ure P10.17. The channel width increases from B; to Bs and the water surface elevation is
the same in each channel. If the upstream depth of flow is H, determine h, the amount the
channel bed needs to be raised across the transition section to maintain the same surface
elevation.

10.18 Water of density p flows in an open channel of constant width w with an initial
depth of Hy. At some point, the bottom rises smoothly to a height Hs and the depth of the
water decreases to Ho, as shown in Figure P10.18. If the upstream Froude number F; = 0.4,
and the downstream Froude number F5 = 1.0:

(a) Find Hy/H; (this is a number).

(b) Find H3/H; (this is a number).

(c) Find the force F, exerted by the water on the step in the horizontal direction. Express
the result in terms of the non-dimensional force coefficient using p, g, w, and Hy (this is a
number).

Show all your working, and state all your assumptions. Viscous forces can be neglected.

10.19 Water flows steadily with no losses in an open-channel flow that contracts in width,
as shown in Figure P10.19. The velocity of the water at the upstream station is V7, the
Froude number is F}, the width of the channel is W7, and the depth is hq. At the point of
minimum cross-sectional area (the throat), the velocity is V5, the Froude number F» = 1,
the width of the channel is W, and the depth hy = 3hy /4. Assume one-dimensional flow.
(a) Find F; (this is a number).

(b) Find W5/W; (this is a number).

(¢) Find the horizontal force exerted by the fluid on the contracting part of the channel in
terms of the non-dimensional force coefficient Cp = F/(pgW1h?) (this is a number).

Figure P10.14
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10.20 Water flows steadily and smoothly down a ramp of height b in an open-channel flow
of constant width, as shown in Figure P10.20. The Froude number at the upstream station
is subcritical and equal to F, and the depth at this station is h;. Downstream, the Froude
number is F3, and it is found by experiment that surface waves make an angle of 30° to the
flow direction. State all your assumptions.

(a) Find F5 (this is a number).

(b) Find Fy if h1/he = 2 (this is a number).

(c) Find b/h; (this is a number).

10.21 Water flows steadily and smoothly through an open-channel flow of varying width,
as shown in Figure P10.21. The Froude number at the upstream station is subcritical and
equal to Fp, and the width and depth at this station are w; and hq, respectively. At the
point of minimum channel width (the “throat”), the Froude number F» = 1, and the width
and depth are wy and hs. Downstream of the throat the channel expands to a constant
width, and at this point the Froude number is F3 and the width and depth of the flow are
ws and hs. Note that ho/h; = 3/4, and ws = w;. State all your assumptions.

(a) Find Fy (this is a number).

(b) Find ws/wy (this is a number).

(¢) Show that hi/hg is approximately equal to 2.37.

10.22 A smooth transition section connects two open channels of the same width, as
shown in Figure P10.22. The water depth decreases so that the ratio of the downstream to
upstream depths Y5/Y; = 1/4. The upstream Froude number F; = 0.3.
(a) Determine the downstream Froude number Fy, and the ratio h/Y;.
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(b) Find the drag coefficient F/(pVwY7) where F is the force exerted by the fluid on the
bump (this is a number).

10.23 Water flows steadily over a bump of height h, as shown in Figure P10.23. The
width of the channel is constant. At position 1, the depth of the water is H; and its velocity
is V1, and at position 2, the depth of the water is Hs and its velocity is Vo. The Froude
number at position 1 is F} = 0.2.

(a) Find the Froude number at position 2 if H;/Hs = 2 (this is a number).

(b) Find the h/H; (this is a number).

10.24 A river of width w flows over a large rock of height h, as shown in Figure P10.24.
(a) By examining the water profile, is the flow upstream of the rock subcritical or super-
critical?

(b) Find the Froude number upstream of the rock, given that Hy/H; = 1.5, assuming that
there are no losses, and that the Froude number at the top of the rock Fy = 1.

(¢) Find the non-dimensional height of the rock h/Hj.

(d) Find the drag coefficient Fp/pgwH?, where Fp is the drag force acting on the rock.
Neglect friction on the river bottom.

10.25 Consider the steady, frictionless open channel flow of water through the constric-
tion, as shown in Figure P10.25. At position 1, the depth is Y7, the velocity is Vi and the
Froude number is F; = V5 //gY:. A similar notation is used at position 2 (the throat), and

Figure P10.24
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positions 3 and 4. You may assume one-dimensional flow.

(a) If Y1 > Y5 > Y3, is Fy supercritical, or subcritical? Also, is F3 supercritical, or subcriti-
cal?

(b) If Y1 < Y3, and Y3 < Y3, is Fy supercritical, or subcritical? Also, is F3 supercritical, or
subcritical?

(c) Given that Y5/Y; = 0.75, and that Y5 < Y5, find Fy, and By/B; (these answers are
numbers).

(d) What is the smallest value of Y5/Y; that can be achieved?

10.26 By combining the momentum and continuity equations (equations 10.6 and 10.7),
obtain equation 10.8 where F} is the upstream Froude number, that is, F} = Uy /v/gH;.

10.27 By using the definition of the Bernoulli constant (equation 8.34), the continuity
equation (equation 10.10), and the hydraulic jump relationship (equation 10.9), obtain equa-
tion 10.12 for a two-dimensional channel flow.

10.28 The water depth upstream of a stationary hydraulic jump is 1m, while the depth
after the jump is 2m. Find the upstream and downstream velocities and Froude numbers.

10.29 The depth of water in a rectangular channel is 1.5 ft. The channel is 6 ft wide and
carries a volume flow rate of 200 ft3/s. Find the water depth after a hydraulic jump.

10.30 Draw and label a hydraulic jump (in a channel of constant width).

(a) Indicate regions of supercritical and subcritical flow.

(b) What happens to Bernoulli’s constant through the jump?

(c) Write down the relationship between the ratio of upstream and downstream water depths,
and the upstream Froude number.

(d) Derive a relationship between the ratio of upstream and downstream water depths, and
the downstream Froude number.

(e) A surge is moving at 5m/s into an estuary of depth 1 m where the water is moving out
to sea at 1m/s. Find the water depth behind the surge.

10.31 A surge is moving at 10 ft/s into a depth 2 ft where the speed is zero. Find the
water depth behind the surge.

10.32 A tidal bore is moving at 5m/s into a stagnant basin of depth 1m. What is the
depth of water behind the bore?
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10.33 Consider a bore traveling at 6m/s into tidal basin of depth 1.5m. Calculate the
depth of the water behind the bore.

10.34 A bore is moving with velocity U, into a stagnant tidal channel of depth Y7, as
shown in Figure P10.34. When U, = /3¢Y1, find Us/Uy.

10.35 A surge is moving at 9 ft/s into a basin of depth 1.4 ft where the speed is zero.
Find the water depth behind the surge and the drift velocity behind the surge (that is, the
velocity downstream of the surge in a stationary frame of reference).

10.36 A river of depth 2m flows downstream at 1m/s. A surge of depth H moves up the
river at 5m/s relative to a stationary observer on the bank of the river. Find H.

10.37 A tidal bore is moving upstream into a river of constant width and of depth 1.5 m.
The river is flowing at a speed of 2 m/s. Find the speed of the bore relative to a stationary
observer if the height of the water downstream of the bore is 3 m.

10.38 A planar bore moves at a speed of 2m/s against a flow that has a speed of 1m/s
and a depth of 0.5m, as shown in Figure P10.38. Find H, the depth of the water behind
the bore.

10.39 A surge of depth H moves into a stagnant tidal pool of depth 1m at a speed of
6 m/s relative to a stationary observer on the bank of the pool. Find H, and then find the
drift velocity behind the surge, relative to the stationary observer.

10.40 A surge is observed to enter a tidal channel that is moving at 1m/s against the
surge. If the depths of the water upstream and downstream of the surge are 1m and 2m,
respectively, what is the speed of the surge relative to a stationary observer on the bank of
the channel?

10.41 A tidal bore is moving upstream into a river of depth 1 m, and constant width, and
the bore raises the water level by 1m. The river is flowing downstream at a steady velocity
of 2m/s.

(i) Find the velocity of the bore relative to a stationary observer.

(ii) Find the velocity of the water downstream of the bore relative to a stationary ob-
server.
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10.42 A bore (a moving hydraulic jump) travels into a stagnant basin where the depth is
1 m. The depth of the water behind the bore is 2 m.

(a) Find the speed of the bore relative to a stationary observer.

(b) Find the speed of the water behind the bore relative to a stationary observer.

10.43 A bore moving at 10m/s moves upstream into a river, which is moving downstream
at 2m/s. The river has a constant width and a depth of 2m. Find the speed of the river
flow downstream of the bore.

10.44 Show that the head loss in a hydraulic jump can be expressed as:

(Y2 — Y1)°

head loss = .Y,

where Y7 and Y5 are the water depths upstream and downstream of the jump, respectively.
The head loss is the difference between the upstream and downstream values of the Bernoulli
constant, and it has the dimensions of length.

10.45 Consider the steady open channel flow of water in the smooth constriction shown
in the plan view in Figure P10.45. At position 1, the depth is Y7 and the width is Bj.
You may assume that B; is much larger than either By or Bj, the widths of the channel
at positions 2 and 3, respectively. A hydraulic jump is observed between positions 3 and
4 where the upstream depth Y3 = ¥7/3. You may assume one-dimensional flow, and that
F <1

(a) Find Y3, the depth at position 2, in terms of Y;.
(b) Find F3, the Froude number at position 3.

(c) Find Yy, the depth just downstream of the hydraulic jump, in terms of Y.

(d) Find Fj, the Froude number just downstream of the hydraulic jump.

(e) Find F5, the Froude number at the exit, given that Y5 = 1.1Y}.

10.46 Consider the steady open channel flow of water in the smooth constriction shown in
plan view in Figure P10.46. At position 1, the depth is Y7, the width is B; and the Froude
number F; = 4. A similar notation is used at positions 2, 3 and 4. A hydraulic jump is
observed just downstream of position 2 where the Froude number F> = 2. You may assume
one-dimensional flow.

(a) Find Y3, the depth at position 2, in terms of Y;.

(b) Find Y3, the depth just downstream of the hydraulic jump, in terms of Y7.
(c) Find F3, the Froude number just downstream of the hydraulic jump.
(d) Find Fy, the Froude number at the exit, given that Y3/Yy = 1.2.

(e) Find B4/Bl.

10.47 A two-dimensional channel flow flows smoothly over a small bump, as shown in
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Figure P10.47.

(a) If the Froude number at station 2 equals unity (Fp = 1), find Y2/Y7 in terms of F; and
H/Y.

(b) If Y3/Y1 = 0.5, find F3 in terms of F}.

(c) If F3 = V3, find Y, /Y1 such that a hydraulic jump is formed in front of the barrier.

10.48 Water flows steadily and smoothly over a bump of height b in an open-channel flow
of constant width, as shown in Figure P10.48. The Froude number at the upstream station
is Fy, and the depth is k1. The point of minimum depth (the throat) occurs at the crest of
the bump, where the Froude number is F» = 1, and the depth ho = b = hy/2. A stationary
hydraulic jump is located between points 3 and 4. Assume one-dimensional flow.

(a) Find F (this is a number).

(b) Derive an equation for hi/hs in terms of Fj. Do not attempt to solve.

(c) Find hy/hy (this is a number).

10.49 A circular jet of water impinges on a flat plate as shown in Figure P10.49. The
water spreads out equally in all directions and at station 1, the flow is essentially uniform
over the depth Y. The jet exit velocity V is 10m/s and the exit diameter D is 10mm. If
you are given that R =8D, and Y1 = D/4

(a) Find the Froude number of the flow at station 1.

(b) If you are given that a circular hydraulic jump forms near station 1, estimate the depth
of water after the hydraulic jump using the one-dimensional hydraulic jump relationship.
Under what conditions will the accuracy of this estimate improve?

10.50 Consider the steady flow of water under the sluice gate shown in Figure P10.50.
The velocity of the flow at sections 1, 2 and 3 is independent of depth, and the streamlines

L f['}:
b T . M
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Figure P10.48
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are parallel.

(a) Show that for hy < hy the flow at section 2 is always supercritical. Assume the flow
between sections 1 and 2 occurs without loss.

(b) Between sections 2 and 3 a stationary hydraulic jump is formed. If ho/h; = 0.5, find
hs/ha.

10.51 Water flows in an open channel of constant width as shown in Figure P10.51. The
upstream Froude number F; = 0.5. At the point where the water flows over a bump of
height H, the Froude number equals one.

(a) Find the depth ratio Y5/Y7.

(b) Find the ratio H/Y7.

(c) Given that a hydraulic jump occurs downstream of the bump such that Y, /Y5 = 8, find
Y3/Y1.

10.52 A smooth transition section connects two rectangular channels. In the direction of
flow, the channel width increases from B; to By and the water surface elevation decreases
so that the ratio of the downstream to upstream depths Y5/Y; = 0.5.

(a) If the upstream Froude number F; = 1.5, find the downstream Froude number Fs, and
the ratio Bg/Bl.

(b) If a stationary hydraulic jump occurs in the channel downstream of the expansion,
determine Y3, the depth downstream of the jump, in terms of Y.

10.53 Consider the steady open channel flow of water in the smooth constriction shown in

Figure P10.51
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plan view in Figure P10.53. At position 1, the depth is Y7, the width is By and the Froude
number is F; =1/ V2. A similar notation is used at positions 2, 3 and 4. A hydraulic jump
is observed just downstream of position 3 where the depth Y3 = Y7/4. You may assume
one-dimensional flow.

(a) Find F3, the Froude number at position 3 (this is a number).

(b) Find Bs, the width of the channel at position 3 in terms of B;.

(c) Find Yy, the depth of the water at position 4, downstream of the hydraulic jump, in
terms of Y7.

10.54 Water flows steadily and smoothly over a bump in an open-channel flow of constant
width, as shown in Figure P10.54. The Froude upstream of the bump is F, and at the point
of minimum channel depth the Froude number F5 = 1. Downstream of the bump the channel
bottom has risen by an amount a, and the water has a depth of H3. Further downstream,
there is a stationary hydraulic jump where the downstream water depth is Hy. If H; = 2H,
and F3 = 2,

(a) Find Fy (this is a number).

(b) Find H3/H; (this is a number).

(¢) Find a/H; (this is a number).

(d) Find H4/H; (this is a number).

10.55 An oil boom of width w is placed in a river to catch oil drops on the surface of
water of density p flowing in a shallow river, as shown in Figure P10.55.

(a) Find the Froude number upstream of the boom, given that H;/Hs = 2, assuming that
there are no losses.

(b) Find the Froude number downstream of the boom.

(c) Find the drag coefficient Fp/pgwH?%, where Fp is the drag force acting on the boom.
Neglect friction on the river bottom.

(d) Find the Froude number downstream of the hydraulic jump.

10.56 Water flows steadily in a smooth constriction, as shown in plan view in Fig-
ure P10.56. At position 1, where the depth of the water is Y; and the width of the channel
is Bi, the Froude number is 0.5. A hydraulic jump is located between positions 3 and 4
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where the upstream depth is Y3. Assume one-dimensional flow. Show all your working.

(a) Find the ratio of depths Y5/Y7, where Y5 is the depth of the water at the throat.

(b) Find the ratio of channel widths By/B;, where Bs is the width of the channel at the
throat.

(¢) Find the Froude number F3 just upstream of the hydraulic jump, where Y3/Y; = 0.375.
(d) Find the Froude number Fy just downstream of the hydraulic jump.

10.57 Water issues from a large reservoir in the form of a jet of width W and depth Y7,
as shown in Figure P10.57. The cross-sectional area of the tank A is much larger than the
jet area WY1, and the depth H is much larger than Y.

(a) Calculate the exit Froude number Fy, and show that Fy > 1.

(b) Show that Ya, the depth at the crest of the bump of height h, is given by the solution to

Yo\ ® F2  n\ (Y\® F?
(Yl) ( T v\ T

Carefully note all your assumptions.

10.58 Consider water flowing without friction through a contraction in an open channel.

Area A

Figure P10.57
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The channel and the surface profile are shown in Figure P10.58.

(a) Is the Froude number at station 1 subcritical or supercritical?

(b) Given that Y2/Y7 = 2, and Bo/B; = 0.6, find the Froude number at station 2 (this is a
number).

(c) If there was a hydraulic jump downstream of station 2, what would be the height of the
jump in terms of Y77

10.59 For the flow described in the previous problem, find the force Fy exerted by the
water on the flume. Use the continuity equation and the momentum equation to find the
nondimensional force coefficient Fyr/(pgB1Y:?) in terms of the incoming Froude number and
the length ratios Y5/Y7, and Ba/Bj.

10.60 An open channel flow of constant width W flows over a small obstruction, as shown
in Figure P10.60. Show that

_RB M 1k
pUZWhy — hy 2F? h2

where R is the force exerted by the fluid on the obstruction, p is the density and F} is the
Froude number of the incoming flow. Neglect viscous forces on the channel floor.

10.61 For the open-channel flow in the smooth contraction shown in plan view in Fig-
ure P10.61, the depth of the incoming flow is Y7 and the depth of the exiting flow is Y5.
The flow attains the critical Froude number at the throat. If the upstream Froude number
is much less than unity, show that Y5/Y; & 2/3, and that

F, 4B,
ipgY2B1 3B

where F), is the force acting on the contraction walls, and B; and By are the upstream and
downstream channel widths, respectively. Ignore all viscous forces.



184 PROBLEMS Chapter 10

Plan view of contraction

Side view of contraction

Figure P10.61

Figure P10.62

10.62 Water flows smoothly over a bump of height h in the bottom of a channel of constant
width W, as shown in Figure P10.62. If the upstream depth is Y7, the upstream Froude
number Fy is 0.7, and Y1 /Y5 = 2, find

(a) The downstream Froude number F5. Is it supercritical?

(b) The magnitude and direction of the horizontal force exerted by the fluid on the bump,
in terms of g, W, h and Y7.

(c) If the flow was now subcritical everywhere again find the force on the bump.

(d) If a hydraulic jump is located downstream of the bump (and F; is 0.7 again), calculate
the Froude number of the flow downstream of the jump.

10.63 Water flows steadily in an open channel of width W, as shown in Figure P10.63. It
passes smoothly over a bump of height h. Initially, the Froude number F; = 0.5, and the
depth of the water is Y;. The water depth decreases to a depth of Y5 over the bump, and
then continues to decrease downstream of the bump to a depth of Y3.

(a) What is the Froude number Y57

(b) Use Bernoulli’s equation and continuity to find the numerical value of Y5/Y7, and the
numerical value of h/Y7.

(c) If Y3/Y1 = 0.422, find the numerical value of the force coefficient Cp = D/(pgWY7?),
where D is the horizontal force exerted by the fluid on the bump, p is the water density,
and ¢ is the gravitational acceleration. Ignore friction.

10.64 Consider the steady, smooth flow of water in an open channel of constant width W,
as shown in Figure P10.64. A deflector plate causes the water to accelerate to a supercritical

Figure P10.63
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speed. At position 1 the depth is Y7 and the Froude number F; = 0.2. At position 2 the
depth is Y5 and the Froude number F5 = 3.38. Assume one-dimensional flow.

(a) Find the ratio Y2/Y7 two different ways (this is a number).

(b) Find the nondimensional ratio 2R/pgY?W, where R is the force exerted on the fluid by
the deflector plate, in term of Y5/Y7, Fy and Fs.

10.65 Water in an open-channel flow of constant width flows steadily over a dam as shown
in Figure P10.65. The velocity of the water far upstream of the dam is V', the Froude number
is F and the depth is h. Far downstream of the dam the depth is h/4.

(a) Find the horizontal force per unit width acting on the dam in terms of V', h, g and the
density p. Ignore friction.

(b) There is a hydraulic jump located even further downstream. Find the depth of water
downstream of the jump in terms of F' and h.

10.66 Water in a two-dimensional open channel flows smoothly and steadily over a sub-
merged obstacle of height H and width W as shown in Figure P10.66. The flow over the
peak of the obstacle becomes critical at the point where the depth is Y3, where Y5 = Y3 /3.
(a) Find Fy, the Froude number of the incoming flow.

(b) Find H/Y7, the nondimensional height of the obstacle.

(c) Find the resultant force acting on the obstacle in terms of p, g, W, and Y7, given that
Y3/Y; = 0.165.

Figure P10.66
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Chapter 11

Compressible Flow

11.1  Study Guide

Weak pressure disturbances in a flowing fluid create a wave that makes an angle of
oy with the flow direction, where sin apy = 1/M, where M is the Mach number .

Define enthalpy and entropy in terms of other thermodynamic variables.
Define Cp, Cy, v, and express C, and C, in terms of R and ~ for an ideal gas.

What are the relationships between pressure an temperature, and pressure and density,
for isentropic flow of an ideal gas?

Write down the energy equation for one-dimensional, steady, adiabatic flow of a perfect
gas in terms of the total temperature, 7. What can you say about Tp?

Study how isentropic flow behaves in converging and diverging flows at subsonic and
supersonic flow (see Figure 11.8).

‘What is choked flow?

What happens to Ty across a shock wave? What happens to temperature, density,
pressure, entropy, total pressure?

When is an oblique shock “strong” and when is it “weak”? Which is the usual case?

What happens when the turning angle exceeds the maximum value (@ > Qypq.) for a
given Mach number? What is the Prandtl-Meyer function, and how is it used to find
the flow properties in isentropic expansions and compressions?

11.2  Worked Examples

Example 11.1: Thermodynamic properties

When a fixed mass of air is heated from 20°C to 100°C":

(
(b
(c
(

a) What is the change in enthalpy?

) For a process at constant volume, what is the change in entropy?

) What is the change in entropy for a process at constant pressure?
d) For an isentropic process, find the changes in density and pressure.

(e) Compare the isentropic speed of sound in air to its isothermal value. Assume that air
behaves as a perfect gas.

187
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Solution: For part (a), we have C, = 1004 J/kg - K (Table Appendix-C.8 and equa-
tion 11.11). From equation 11.7

hy — hy = C, (T — Ty) = 1004 (100 — 20) J/kg = 80,320 J/kg

For part (b), we use equation 11.16. Since the process is at constant volume, ps = p1,

and
T C T
—51=Cyln{=)=22In|=
S H(Tl) Y H<T1)

1004 100 + 273.15
1.4 20 +273.15

Therefore

Sg — 8] = )J/k;g~K:173J/kg-K
For part (c), we use equation 11.17. Since the process is at constant pressure, ps = p1,
and

T
59 —s51=0C, ln%:10041n

1

100 +273.15
20 +273.15

) J/kg K =242.3J/kg- K

For part (d), we use 20°C' as the reference temperature in the isentropic relationships
(equation 11.18). With v = 1.4, we obtain

proo _ (Two\** _ (100+27315\*%
p20  \ Tao ~ \ 20+273.15 T

and

3.5 3.5
proo _ (Too\*" _ (1004273.15\*7 -
I 20 + 273.15

For part (e), the isentropic speed of sound is given by equation 11.20:

as = /YRT = \/1.4 x 287.03 x (20 4 273.15) m/s = 343.2m/s

o
op|r

For an ideal gas at constant temperature

The isothermal speed is given by

P_ RT = constant.

p

By differentiating this relationship, we find that

Therefore

That is,

ar = VRT = /287.03 x (20 + 273.15) m/s = 290.07m/s

When Newton attempted to compute the speed of sound, he wrongly assumed that the
transmission of sound was an isothermal, rather than an isentropic phenomenon. We see
that for air this error leads to an estimate that is about 18% too low.
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Example 11.2: Normal shock relations

A normal shock is observed in an air flow at Mach 3 at 100°K. The density of the air is

0.8 kg/m?. Find

(a) The stagnation temperature.

(b) The density, pressure, temperature, and Mach number downstream of the shock.

(c) The entropy rise across the shock.

To find the solutions, use the normal shock relations given here. You should then check the
results using the compressible flow calculator available on the web at http://www.engapplets.vt.edu/ .

Solution: For part (a), equation 11.25 (with v = 1.4):
Ty =100 x (1 +0.2 x 3%) = 100 x 2.8°K = 280°K

For part (b), we use equations 11.43, and 11.49 to 11.51. Hence,

3245
My=—"""2 0922
2= o gp oy 2%
0.8 x 2.4 x 32
= 222270 pg/m® = 3.086 kg/m3
P= 3o F/m g/m

and

2.8
p2= |1+ (32 =1)| p1 = 10.33p;

From the ideal gas law, p; = 0.8 x 287.03 x 100 Pa = 22,962 Pa, and so
p2 = 237,202 Pa

Finally,

P2 p1 0.8
=—-—=T7 =10.33 x
pLpa 3.08

For part (c), we use equations 11.52 and 11.53. Hence,

Po2 100 35
. 0.33 x (267.8> 0.329

15

5 x 100°K = 267.8°K

and

1
S9 — 81 = 287.03 x In (0329) J/kg- K = 3194J/kg- K

Example 11.3: Unsteady shock motion

Consider a constant area duct with a normal shock wave moving through it (Figure 11.1).
This situation occurs in a shock tube where two gases at different pressures are initially
separated by a thin diaphragm. When the diaphragm is broken, the high pressure gas
propagates into the low pressure gas and this pressure “wave” rapidly forms into a moving
shock. This process is very similar to that which generates a moving hydraulic jump (see
Section 10.9).

The pressure, temperature and velocity upstream of the shock are p; = 75 kPa, T} =
20°C, and V4 = 0m/s. Downstream of the shock the pressure, temperature and velocity
are po = 180kPa, To = 97°C, and Vo = 280m/s. Find the shock speed, and the Mach
number of the upstream flow relative to an observer moving with the shock.

Solution: To a stationary observer, the flow is not steady: first, nothing would be happen-
ing, then a shock moves past, followed by a steady flow of gas. If we move with the shock,
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(b) —

Figure 11.1: Moving normal shock in a constant area duct. (a) In a stationary frame of reference.
(b) In a frame of reference moving with the shock.

however, the flow becomes steady. For a control volume moving with the shock, the steady
one-dimensional continuity equation gives

—pVsA+ (Vs = Vo) psA = 0

where V is the speed of the shock relative to a stationary observer. Using the ideal gas law
(equation 1.3)

T
D2y v =0
p2 11
and so: 80 380
———V,+ V=280 = 0
180 293 +

where V5 is in meters per second. Hence,

Vs =661m/s
From Section 11.4.4, a = \/vR1T, so that, relative to the moving shock, the upstream flow
has a Mach number of

Vi 661
VART, /1.4 x 287.03293

= 1.93

Example 11.4: Flow over a diamond-shaped airfoil

A supersonic airfoil with a symmetrical diamond-shaped cross-section is moving at Mach 3
in air at 100°K (see Figure 11.2). Shocks form at the leading edge as the flow is turned over
the front part of the airfoil, and also at the trailing edge where the flow is turned back in the
freestream direction. At the shoulder, an expansion fan forms, and this will be discussed in
Section 11.10. Here, we consider only the flow over the leading edge, which has a half-angle
of 10° . The density of the air is 0.8 kg/m3. Find

(a) the stagnation temperature;

(b) the angle the shock on the leading edge makes with the freestream (assuming the weak
solution);

(c) the density, pressure, temperature, and Mach number downstream of the shock;

(d) the entropy rise across the shock;

(e) the Mach number, and pressure downstream of the expansion fan;

(f) the drag acting on the airfoil.

Solution: For part (a), we use the definition of the total temperature (equation 11.25), and
we find that with v = 1.4, M = 3 and T' = 100° K, the stagnation temperature Ty = 380° K.

For part (b) we find from Figure 11.15 that the shock angle for the weak solution is
B ~ 27°. A more accurate value can be found by iterating equation 11.65, but 27° is
accurate enough for our purposes here.
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Leading edge
shock

Trailing edge
shock

Expansion fan

M,

Cross-
sectional
area A,

Figure 11.2: Diamond-shaped airfoil in a supersonic flow.

For part (c), we use equations 11.60 to 11.62, and the ideal gas law. With M; = 3 and
B = 27°, M?sin? B = 1.855, so that:

(i) Density: pa/p1 = 1.624, and py = 1.299 kg/m?>.

(ii) Pressure: pa/p; = 1.997. From the ideal gas law, p—_p; RT} = 0.8 x 287.03 x 100 Pa =
22,962 Pa. Hence, ps = 45,866 Pa.

(iii) Temperature: From the ideal gas law, To = p2/(p2R) = 45,866/ (287.03x1.299)° K =
123°K.

(iv) Mach number: From equation 11.62, we see that M3 sin® (8 — ) = 0.572, so that
My = 2.587.

For part (d), we use equations 11.52 and 11.53. Hence, pg2/po1 = 0.9676, and As =
9.444 J/kg - K = 9.444m? /52K

For part (e), we use the Prandtl-Meyer function for an expansion (equation 11.52). Using
Table Appendix-C.12, we find that upstream of the fan v, = 41.1°, and so downstream of the
fan v3 = 41.1°4-20° = 61.1°. This gives M3 = 3.667, and by using the isentropic relationship
given by equation 11.28, where pps = po2, we obtain p3/p2 = 0.203, and ps = 9303 Pa.

For part (f), we find the component of the forces due to pressure acting in the streamwise
direction. For the two surfaces (upper and lower) exposed to ps we have Fy = poA., and
for the two surfaces exposed to p3 we have F3 = p3A.. Hence the total drag force is given
by F'= (p2 — p3)Ae.

Example 11.5: Isentropic compression and expansion

In Example 11.4, we considered a diamond-shaped airfoil traveling in air flow at Mach 3
(see Figure 11.2). The deflection angle on the top and bottom of the wedge was 10°.

(a) If instead the compression was achieved by a series of Mach waves, so that the compres-
sion was isentropic, find the downstream Mach number and pressure.

(b) If instead of a compression, the flow experienced a 10° isentropic expansion, find the
downstream Mach number and pressure.

Solution: For part (a) we find

(i) By interpolation from Table Appendix-C.12 v; = 49.75°. For an isentropic compres-
sion of 10°, vy = 49.75° — 10° = 39.75°. From the table, My = 2.527 (compared to 2.587
for the same deflection by a single oblique shock).

(ii) Since the flow is isentropic, po1 = po2, and equation 11.28 gives ps/p; = 2.062
(compared to 1.997 for the same deflection by a single oblique shock).

For part (b) we find
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(i) For an isentropic expansion of 10°, v = 49.75°+10° = 59.75°. From Table Appendix-
C.12, My = 3.578.
(ii) Equation ?? applies to an isentropic expansion as well, so that py/p; = 0.786.

The pressure rises through a compression and falls through an expansion, and the Mach
number decreases through a compression and increases through an expansion.

Problems

11.1  What is the speed of a sound wave in air at 300° K7 What is the speed in helium
at the same temperature? Can you explain why a person who has inhaled helium speaks
with a high-pitched voice (do not try this yourself)?

11.2  Find the Mach number of an airplane traveling at 2000 ft/s at altitudes of 5000 ft,
10,000 ft, 20,000 ft, and 30,000 ft. Assume a standard atmosphere (Table Appendix-C.6).

11.3  Methane (CHy) at 20°C flows through a pipe at a speed of 400 m/s. For methane,
R =15183J/(kg- K), v = 1.32. Is the flow subsonic, sonic, or supersonic?

11.4 Find the stagnation pressure and temperature of air flowing at 100 ft/s if the
temperature in the freestream is 60°F and the pressure is atmospheric.

11.5 Find the stagnation pressure and temperature of air flowing at 200 m/s if the pres-
sure and temperature in the undisturbed flow field are 0.96 x 10° Pa and 10°C, respectively.

11.6  Find the stagnation pressure and temperature of air flowing at 200m/s in a stan-
dard atmosphere at sea level, and at heights of 2000 m and 10, 000 m.

11.7  An airplane flies at a speed of 150 m/s at an altitude of 500 m, where the temper-
ature is 20°C'. The plane climbs to 12,000 m where the temperature is —56.5°C' and levels
off at a speed of 600m/s. Calculate the Mach number for both cases.

11.8  The Lockheed SR-71 reconnaissance airplane is rumoured to fly at a Mach number
of about 3.5 at an altitude of 90,000 ft. Estimate its flight speed under these conditions.

11.9  The National Transonic Facility (NTF) is a wind tunnel designed to operate at
Mach and Reynolds numbers comparable to flight conditions. It uses nitrogen at cryogenic
temperatures as the working fluid. A schlieren photograph taken in the NTF of a 1/20th
scale model of a Concorde airplane (full-scale wingspan of 30m) shows a Mach angle of
28° at a point where the temperature is 100°K and the pressure is 9,000 Pa. Find the
local Mach number and the Reynolds number based on the model wingspan, given that
the kinematic viscosity of nitrogen under these conditions is 7 x 107N - s/m?2. Compare
with the Reynolds number and Mach number experienced by the full-scale airplane flying
at 600m/s at an altitude of 20,000 m in a standard atmosphere.

11.10 Show that the air temperature rise in °K at the stagnation point of an aircraft is
. 2
almost exactly (speed in mph/100)”.

11.11 The working section of a transonic wind tunnel has a cross-sectional area 0.5m?2.
Upstream, where the cross-section area is 2m?, the pressure and temperature are 4 x 10° Pa
and 5°C, respectively. Find the pressure, density and temperature in the working section
at the point where the Mach number is 0.8. Assume one-dimensional, isentropic flow.
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11.12 Air at 290°K and 10° Pa approaches a normal shock. The temperature downstream
of the shock is 540° K. Find:

(a) The velocity downstream of the shock.

(b) The pressure change across the shock, and compare it with that calculated for an isen-
tropic flow with the same deceleration.

11.13 A Pitot tube is placed in a supersonic flow where the freestream temperature is
90°K and the Mach number is 2.5. A normal shock forms in front of the probe. The probe
indicates a stagnation pressure of 52 x 10% Pa. If the stagnation temperature is 270° K, find
the pressure, density, stagnation pressure and velocity of the flow upstream of the shock.

11.14 Air with a stagnation temperature of 700°K is compressed by a normal shock. If
the upstream Mach number is 3.0, find the velocity and temperature downstream of the
shock, and the entropy change across the shock.

11.15 Find the maximum increase in density across a shock wave for a gas with v = 1.4.

11.16 A blowdown wind tunnel is supplied by a large air reservoir where the pressure is
constant at 1.014 x 10° Pa and the temperature is constant at 15°C. The air passes through
a working section of area 0.04m? and exits to a large vacuum vessel. Find the pressure,
density, velocity and mass flow rate in the working section if the Mach number there is 4.0.

11.17 A rocket motor is designed to give 10,000 N thrust at 10,000 m altitude. The
combustion chamber pressure and temperature are 2 x 10 Pa and 2800°K, respectively.
The gases exit the combustion chamber through a Laval nozzle. Find the exit Mach number,
and the cross-sectional areas of the exit and the throat of the nozzle. Assume the nozzle flow
is isentropic and one-dimensional, and that the ratio of specific heats  for the combustion
gases is 1.32.

11.18 A blowdown wind tunnel exits to atmospheric pressure. In the working section
where the cross-sectional area is 0.04m?, the flow has a Mach number of 3 and a pressure
of 0.3 x 10° Pa.

(a) What is the minimum stagnation pressure required?

(b) What is the minimum stagnation temperature required to avoid air condensation in the
working section (the condensation temperature under these conditions is about 70°K)?

(c) What is the corresponding stagnation density under these conditions?

(d) What is the mass flow rate under these conditions?

11.19 Air flows through a converging and diverging nozzle with an area ratio (exit to
throat) of 3.5. The upstream stagnation conditions are atmospheric, and the back pressure
is maintained by a vacuum system. Find:

(a) The mass flow rate if the throat area is 500 mm?.

(b) The range of back pressures for which a normal shock will occur within the nozzle.

11.20 A large reservoir maintains air at 6.8 x 10° Pa and 15°C. The air flows isentropically
through a convergent and divergent nozzle to another large reservoir where the back pressure
can be varied. The area of the throat is 25 ¢m? and the area of the nozzle exit is 100 cm?.
Find

(a) The maximum mass flow rate through the nozzle.

(b) The two values of the Mach number at the nozzle exit corresponding to this mass flow
rate.

(c) The back pressures required to produce these Mach numbers.

11.21 An air flow with a Mach number of 2.0 passes through an oblique shock wave
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Figure P11.25

inclined at an angle of 45°. Find the flow deflection angle a.

11.22 An air flow with a Mach number of 8 is deflected by a wedge through an angle «.
What is the maximum value of « for an attached oblique shock?

11.23 A supersonic flow passes over a symmetrical wedge of semi-angle o = 10°. At the
leading edge an attached shock of 8 = 30° is observed. Find:

(a) The upstream Mach number.

(b) The downstream Mach number.

(c¢) The static pressure ratio across the shock.

11.24 Air having an initial Mach number of 2.4, a freestream static pressure of 10° Pa
and a static temperature of 270°K is deflected by a wedge through an angle of 10°. Find:
(a) The Mach number, pressure and temperature downstream of the shock.

(b) The change in entropy across the shock.

11.25 The shock in the previous problem “reflects” at the opposite wall, as shown in
Figure P11.25. The condition on the second shock is that the flow is turned parallel to the
wall, so that the flow deflection through the second shock must be 10°. Find:

(a) The Mach number, pressure and temperature downstream of the second shock.

(b) The change in entropy s3 — s1.

(¢) The maximum wedge angle for the reflected shock to remain attached.

11.26 An air flow with an initial Mach number of 1.5 and initial pressure p; is expanded
isentropically by passing through a deflection angle of 5°. Find the Mach number and
pressure ratio after the deflection.

11.27 Air at Mach 3.0 is deflected through 20° by an oblique shock. What isentropic
expansion turning angle is required to bring the flow back to

(a) The original Mach number.

(b) The original pressure?

11.28 A flat plate airfoil with a chord length of 1m and a width of 6m is required to
generate a lift of 40,000 N when flying in air at a Mach number of 2.0, a temperature of
—20°C and a pressure of 10° Pa. What is the required angle of attack? What is the wave
drag at this angle of attack?

11.29 A symmetrical diamond-shaped airfoil is placed at an angle of attack of 2° in a flow
at Mach 2 and static pressure of 2 x 10% Pa. The half-angle at the leading and trailing edges
is 3°. If its total surface area (top and bottom) is 4m?, find the forces due to lift and wave
drag acting on the airfoil.
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Turbomachines

12.1  Worked Examples

These examples were adapted from Fox & Macdonald, Introduction to Fluid Mechanics,
John Wiley & Sons, 4th ed., 1992.

Example 12.1: Axial-flow fan

An axial-flow fan operates at 1200 rpm. The blade tip diameter D; is 1.1 m and the hub
diameter Dy, is 0.8 m. The blade inlet and outlet angles are 30° and 60°, respectively. Inlet
guide vanes give the absolute flow entering the first stage an angle of 30°. The fluid is air at
atmospheric pressure and 15°C, and it may be assumed that it is incompressible. The axial
velocity of the flow does not change across the rotor. Assume the relative flow enters and
leaves the rotor at the geometric blade angles and use properties at the mean blade radius
for calculations.
(a) Sketch the rotor blade shapes.
(b) Draw the inlet velocity diagram.
(¢) Find the volume flow rate.
(d) Draw the outlet velocity diagram.
(e) Calculate the minimum torque and power needed to drive the fan.
Solution: For parts (a) and (b), the blade shapes are as shown in Figure 12.1(a), and the
corresponding inlet velocity diagram is shown in Figure 12.1(b).

For parts (c) and (d), the continuity equation gives

anlAl = an2A2

or

G =Vnidi =VyoAs

Since Ay = As, then V,,; = V2, and the outlet velocity diagram is as shown in Figure 12.2.
To complete the velocity diagrams, and find the volume flow rate, we need to find U, V1,
Vi, Vi, Viwy, Vo, Vig, and aa. We start with U. At the mean blade radius,

U = wRy,
The mean blade radius R,, = (D; + Dp,) /4. Also,

rad min
— X
rev 60 sec

w = 1200 <2 x 27 = 126rad/s
min

195
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Blade
motion

{a)

Figure 12.1: Blade shapes and inlet velocity diagram.

Therefore

(11+08) m X 126@ = 59.7m/s
sec

U =
From the inlet velocity diagram,
U = Vp1 (tanag + cot 51)
where a; = 81 = 30°, so that
Vil = Ve = 259m/s

Hence,

V,
Vi = _nl 29.9m/s
cos o

Vii = Visinag = 15.0m/s

Figure 12.2: Outlet velocity diagram.
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and
an

sin 31

Vi, = = 51.8m/s
The volume flow rate can now be found.
¢ = VaiAr = VT (Df — D) = 11.6m*/s

From the outlet velocity diagram

Vio = U — Vyatan (90° — f3) = (59.7 — 25.9tan30°) m/s = 44.7 m/s

Also:

tanay = ﬁ

2 Vn2

so that

oy = 59.9°
and v

Vo = —2 = 51.6m/s
COS (g

For part (d), to find the torque, we use equation 12.6, with 1 = ro = R,,, so that

Tshaft = qum (Vt2 - th)
Hence, using SI units throughout,

0.95
Topape = 12X 116 x — = x (44.7-15.0) N-m = 196N -m

and the power required is given by equation 12.7, so that

Wanart = @lapase = 24.7kW
Example 12.2: Centrifugal pump

Water at 150 gpm enters a centrifugal pump impeller axially through a 1.25 in. diameter inlet
(see Figure 12.3). The inlet velocity is axial and uniform. The impeller outlet diameter is
4in. Flow leaves the impeller at 10 ft/s relative to the radial blades. The impeller speed is
3450 rpm. Determine

(a) The impeller exit width, bs.

(b) The minimum torque input to the impeller.

(¢) The minimum power required.

Solution: For part (a), the continuity equation gives

,0V1A1 = PV2A2

or
q = Vb, 2mRobo
so that
. 3 . .
by = #:ixmog‘?lx 1 w5 ft ><mm><12m.
21 R2ba Vi, 27 min = 2in.  10ft  7.48gal = 60s ft

0.0319 ft or 0.3831in.
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For part (b), the torque is given by equation 12.6
Tshaft = qu2V;52
since the axial inlet flow has no z-component of angular momentum. That is,

Tshast = p(Vip,2TRabo) Ro (wR2) = 27mpwR3ba Vi,

so that p )
w = 3450 -0 x o7 T80 M _ 361 rad)s
min rev  60sec
Hence, using BG units throughout,
slug rad 23 ft

Tshape = 27 X 1.94F X 361T X 133 ft3 % 0.0319 ft x 10? = 6.50 ft - lbs

For part (c), the power required is given by equation 12.7

: rad  6.50
Wshaft = Wlshart = 36 woe < B0 hp 27 hp

The actual input torque and power may be higher than the estimates found here because
of energy losses in the system, which are not accounted for in the analysis.

Example 12.3: Windmill performance

Calculate the ideal efficiency, actual efficiency, and thrust for a Dutch windmill with D =
26 m, w = 20rpm, V4 = 36 km/hr, and power output of 41 kW. Assume that V;/V; = 0.5.

Solution: We have

d .
w = 2020 x o 1A%, T 2.09rad/s
min rev 60 sec
The tip speed ratio is given by equation 12.39, so that
Y — wR  2.09 x 13 x 3600 _ 979

o 36000

Figure 12.20 indicates that the ideal efficiency for this value of X is about 0.53. The actual
efficiency is given by

Pactual Pactual

Nactual =

Pxpr — ipV3ID?2

Fixed CV

R, = 0.625 in.

Figure 12.3: Centrifugal pump.
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With p = 1.2kg/m3,
Nactual = 0.129

which is only 24% of the ideal efficiency at this tip speed ratio.
The thrust is given by equation 12.36. With V;/V; = 0.5, we have

V2
_ 1 2 4 T2 3 2 12
That is,
F = -3 x12x10°x26>° N = 23.9kN

The thrust is negative in the sense that it is opposite in direction to the thrust developed
by a propeller

Problems

12.1 A hydraulic turbine generates 50,000 hp at 75 rpm with a head of 100 ft. Find the
specific speed and use Figure 12.16 to determine what type of turbine is being used.

12.2 A hydraulic turbine operates at a specific speed of 100 (U.S. customary units) and
delivers 500 kW with a head of 10 m. What type of turbine is being used, and what is the
rotational speed necessary to give the optimum efficiency?

12.3  When it operates at peak efficiency, a turbine delivers 25,000 hp at a speed of
450 rpm with a head of 4500 ft. What type of turbine is being used? Estimate the flow
rate and the size of the machine, assuming there are no losses in the flow upstream of the
turbine.

12.4 A Pelton wheel of 4m diameter operates with a head of 1000 m. Estimate the flow
rate and power output of the machine, assuming that it operates at peak efficiency and
there are no losses in the flow upstream of the turbine.

12.5 A Pelton wheel operates with a head of 400 m at 350 rpm, and it is powered by a jet
12 ¢m in diameter. Find the specific speed (U.S. customary units), and the wheel diameter,
if there are no losses in the flow upstream of the turbine and it operates at peak efficiency.

12.6 A turbine of the Francis type operates with a head of 200 m and flow rate of 3m3/s.
The peak efficiency occurs at a head coefficient Cy of 9, a flow coeflicient Cg of 0.3, and a
power coefficient Cp of 2.5 (as defined in Section 12.7). Estimate the size of the machine,
the maximum power produced, and the speed.

12.7 A pump delivers 0.7 ft3/s of water against a head of 50 ft at a speed of 1750 rpm.
Find the specific speed.

12.8 A water pump delivers 0.25m>/s against a head of 20m at a speed of 2400 rpm.
Find the specific speed, in U.S. customary units.

12.9  For the previous two problems, determine the type of pump that would give the
highest efficiency by using Figure 12.17.

12.10 A radial-flow pump is required to deliver 1000gpm against a total head of 350 ft.
Find the minimum practical speed using Figure 12.17.
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12.11 An axial-flow pump runs at 1800 rpm against a head of 1200 ft. Find the flow rate
delivered by the most efficient pump using Figure 12.17.

12.12 Axial-flow pumps are to be used to lift water a combined height of 150 ft at a rate
of 30 ft3/s. Each pump is designed to operate at 1800 7pm. Using Figure 12.17, find the
number of pumps required if they are all operating at their maximum efficiency. Neglect
losses in the piping.

12.13 Using the curves given in Figure 12.15 for a centrifugal water pump with an impeller
of 32in. diameter, operating at 2000 hp find:

(a) The volume flow rate, the total head, and the efficiency.

(b) The specific speed.

12.14 For the pump described in the previous problem, the inlet is located a distance
h; above the surface of the reservoir, and there are no losses in the inlet piping. The
temperature of the water is 50°F. Find the maximum value of h; for which cavitation will
not be a problem.

12.15 Using Figure 12.18, find the effect of a 50% increase in the impeller diameter on the
rotation rate and the volume flow rate of the centrifugal water pump described in Problem
13.13, if the total head and power input remain the same, and the pump continues to operate
at its best efficiency.

12.16 Use Figure 12.18 to find the impeller diameter, power input and head for a pump
of the same family, if it operates at 900 rpm with a volume flow rate of 5000 gpm at peak
efficiency.

12.17 A basement sump pump provides a discharge of 12 gpm against a head of 15 ft.
What is the minimum horsepower required to drive this pump, given that its efficiency is
only 60%?

12.18 For a given pump, the diameter, the gauge pressures at the inlet and outlet are
—30 x 10% Pa and 200 x 103 Pa, respectively. If the flow rate is 0.1 m?3/s, and the power
required is 25 kW, find the efficiency. The intake and discharge are at the same height.

12.19 The impeller of a radial-flow turbine has an outer radius of 4 ft, turning at 200 rpm.
The volume flow rate is 1000 ft3/s, and it discharges in the axial direction. Neglect all losses.
If the tangential component of the velocity at the inlet is 5 ft/s, find:

(a) The torque exerted on the impeller.

(b) The power developed by the machine.

12.20 The diameter of an axial-flow impeller is 2.8 m, and the inlet flow makes an angle
of 10° with the circumferential direction. The volume flow rate is 24 m?/s over an area of
8m? with a head of 100m, and it discharges in the axial direction without swirl. Find the
speed of the runner. Neglect losses.

12.21 A centrifugal water pump with a 200 mm diameter impeller rotates at 1750 rpm.
Its width is 20 mm and the blades are curved backwards so that 8, = 60°. If the flow enters
the pump in the axial direction, and the volume flow rate is 100 L/s, estimate the power
input if the pump is 100% efficient.

12.22 A centrifugal pump is designed to have a discharge of 600 gpm against a head of
200 ft. The impeller outlet diameter is 12in., and its width is 0.5in.. The outlet blade
angle is 65°. What is the design speed and the minimum horsepower required to drive this
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pump?

12.23 A centrifugal pump has inner and outer impeller diameters of 0.5m and 1m, re-
spectively, and a width of 0.15m. The outlet blade angle is 65°. At 350 rpm, the volume
flow rate is 4m?/s. Find:
(a) The exit blade angle so that the water enters the pump in the radial direction. (b) The
minimum power required.

12.24 A propeller 1 ft in diameter rotates at 1200 rpm in water and absorbs 2 hp. Find
the power coefficient, and estimate the power required to increase the speed to 1500 rpm if
the power coefficient remains constant.

12.25 A high-speed two-bladed wind turbine 35m in diameter operates at its peak effi-
ciency in winds of 30 km/hr. Estimate the power generated, the rotor speed, and the wind
velocity in the wake.

12.26 A propeller 2 ft in diameter moves at 20 ft/s in water and produces a thrust of
10001bs. Find the ratio of the upstream to downstream velocities, and the efficiency.

12.27 An airplane flies at 140 mph at sea level at 60°F. The propeller diameter is 8 ft,
and the slipstream has a velocity of 200 mph relative to the airplane. Find:

(a) The propeller efficiency.

(b) The flow velocity in the plane of the propeller.

(¢) The power input.

(d) The thrust of the propeller.

(e) The pressure difference across the propeller disk.

12.28 An airplane flies at 300 km/h at sea level at 20°C'. The propeller diameter is 1.8 m,
and the velocity of the air through the propeller is 360 km/hr. Find: (a) The slipstream
velocity relative to the airplane.

(b) The thrust.

(¢) The power input.

(d) The power output.

(e) The efficiency.

(f) The pressure difference across the propeller disk.

12.29 On a high-speed submarine the propeller diameters are limited to 15 ft¢, and their
maximum rotational speed is set at 200 rpm to avoid cavitation. If each propeller has an
efficiency of 86% and it is limited to 10,000 hp, find the minimum number of propellers
required to move at a speed of 35 mph, and the torque in each shaft.

12.30 A modern multi-bladed windmill design is adapted to work in a tidal flow. When the
water flows at 5m/s, find the maximum power generated for a diameter of 4m. Calculate
the tip speed, and determine if cavitation could be a problem.

12.31 An American farm windmill is used to pump water from a 100 ft deep well through
clean plastic pipe of 2in. diameter. If the rotor diameter is 6 ft, estimate the volume flow
rate when the winds are blowing at 20 mph. Assume that the windmill is working at peak
efficiency, and the pump is 90% efficient. What is the expected flow rate when the wind
drops to 15 mph?
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Chapter 13

Environmental Fluid Mechanics

Problems

13.1  Describe the flow of of air around a high-pressure center over Australia in terms of
its direction of rotation, its vertical movement, and its motion relative to the center.

13.2  What information is typically available from a wind rose for a given locale?

13.3  Explain the difference between the atmospheric lapse rate and the adiabatic lapse
rate.

13.4  How are the environmental (atmospheric) and the adiabatic lapse rate used to
classify the degree of stability in the atmosphere?

13.5  Classify the stability of the atmosphere on the basis of the average temperature
gradient for the following conditions:

(a) Temperature at ground level is 70°F, temperature at 1500 f¢ is 80°F.

(b) Temperature at ground level is 70°F', temperature at 2500 ft is 60°F.

(c¢) Temperature at ground level is 60°F', temperature at 1900 ft is 48°F.

13.6  Classify the stability of the atmosphere on the basis of the average temperature
gradient for the following conditions:

(a) Temperature at ground level is 24.6°C, temperature at 2000 m is 5°C.

(b) Temperature at ground level is 30°C, temperature at 500 m is 20°C.

(¢) Temperature at ground level is 25°C', temperature at 700 m is 28°C.

13.7  On a particular day, the wind speed is 2m/s at a height of 10m. Estimate the
wind speed at heights of 100 m and 300 m if the power law exponent on the velocity profile
is 0.15 (level ground, little cover). Repeat the estimates for an exponent of 0.4 (urban area).

13.8  The wind speed over an urban area is 10m/s at a height of 10m. Estimate the
wind speed at a height of 30 m.

13.9 At agiven location the ground-level temperature is 70°F'. At an elevation of 2000 f¢,
the temperature of the air is 65°F'.

(a) What is the maximum mixing depth, in feet, when the normal maximum surface tem-
perature for that time is 90°F'?

(b) What if it was 84°F'?

203
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13.10 At a given location the ground-level temperature is 18°C, while the normal maxi-
mum surface temperature for that month is known to be 30°C. At an elevation of 700 m,
the temperature of the air is 15°C.

(a) What is the maximum mixing depth, in meters?

(b) What is it if the temperature at 700m is 20°C?

13.11 The atmospheric lapse rate on a particular day is constant in the lower part of
the atmosphere. At ground level, the pressure is 1020 mBar and the temperature is 15°C.
At a height z; the pressure and temperature are 975 mBar and 11.5°C. Determine the
atmospheric temperature gradient, and the height 2.

13.12 Find the terminal speed of spherical particles falling through atmospheric air at
20°C'. Particle densities of:

(a) 1.0 x 1073 g/mm?3

(b) 2.0 x 1073 g/mm3

should be considered with particle diameters of 10, 100, and 1000 um. Take note of the
results given in Figure 9.14.

13.13 Find the terminal speed of spherical particles falling through water at 20°C'. Particle
densities of:

(a) 1000 kg/m?

(b) 2000 kg/m3

should be considered with particle diameters of 10, 100, and 1000 um. Take note of the
results given in Figure 9.14.

13.14 Air at 20°C and atmospheric pressure flows horizontally through a collection cham-
ber 3m high and 5m long. The air carries particles 70 um diameter, with a specific gravity
of 1.5. What is the maximum air speed that can be used to ensure that all particles have
settled out in the chamber?

13.15 Air at 60°F and atmospheric pressure flows horizontally at a speed of 1 f¢/s through
a collection chamber 12 ft high. The air carries particles 0.002¢n. diameter, with a specific
gravity of 2.0. What is the minimum length of the chamber necessary to ensure that all
particles are collected?

13.16 Air at 0°C and atmospheric pressure flows horizontally at a speed of 0.5m/s
through a collection chamber 4m high and 20m long. The air carries particles with a
density of 1600kg/m?. What is the minimum diameter of particles that will be collected in
the chamber?



Answers to Selected Problems

Chapter 1

1.1 400 kg, 27.4 slug, 882 lb,

1.2 11.39 ft3, 0.821 ft3, 1.027 £t3, 0.001206 ft>, 0.000169 ft>
1.3 12041bs, 102.71bs, 62.51bg, 0.07641bs, 0.00379 Ibs
1.4 417N, 69.5 N

1.5 19.33, 2.775, 1.027, 0.001398, 0.001682

1.6 +2.20%, —20.4%, +5.96%, —20.2%

1.7 (a) 6680m, (b) 4855 m

1.8 Need solution

1.9  34.8min

1.10 9460 psi

1.11 Av=-479x 107" m?

1.12  (a) 1.002 x 1073 N - s/m?, (b) 2.73, 0.789, (c) 0.42%
1.13 21,886 N, 49201b;

1.14 0.645psi, 4448 Pa

1.15 (a) 0.95psi

1.16 252,000 N, 56,650 1by

1.17 51.0 x 10" kg

1.18 —0.158 psi

1.19 -1.1%

1.20 0.733

1.21  1.343

1.22  (a) 0.424, (b) 168 x 10°

1.23  w(V/h)nD?/4

1.24 0.798N

1.25 10%kg/ms

1.26 2mr’pwL/(R—7)

1.27  (Ry — R1)T/ (2ruRIL)

1.28 u=1T6/(2rwR*H)

1.29 27ruUd1/(d2 —d1)

1.30 (a) muwLD?/(4e), (b) muw?LD?/(4¢)

1.31 0.104N - s/m?

1.32 3.27m/s

1.33  (a) 10,016, (b) 77.5 x 107° Ib;/ft, (c) 0.0413 Ibs
1.34 5.9um, 106 um, 78 km

1.35 (a) 220,000, (b) 21 x 10°, (c) 475 x 10°, (d) 74 x 10°%, (e) 1.9 x 10°, (f) 667
1.36 (a) 240m/s, (b) 2360m/s, (c) 11.8m/s

1.37 Re = 1667 (laminar)

1.38 9.8mm

1.39 0.033N/m

1.40 104,327 Pa

1.41 584 Pa

1.42  107mm
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Chapter 2

2.1 (a) 36.3psi, (b) 62.4psi, (c) 15.2psi, (d) 8.67 psi

2.2 (a) 2.06 x 10* Pa, (b) 430 x 10® Pa, (c) 105 x 10° Pa, (d) 78.5 x 10° Pa

2.3 (a) —80.7 x 10® Pa, —11.7 psig, (b) 149 x 10® Pa, 21.6 psig, (c) 3.66 x 10° Pa,
0.53 psig, (d) 329 x 10° Pa, 47.7 psig, () —41.5 x 10 Pa, —6.03 psig

2.4  2000N

2.5 1820N

2.6 pgla+b)We

2.7 A2 (F1/A1 —ng)

2.8 0.714m

2.9  (a) 2.81m, (b) 3.48m, (c) 0.208m

2.10 0.072m

2.11  (a) 23.1 x 10> N, (b) > 2.5%, (c) > 0.12%

2.12 pp/pa =28

2.13 20mm
2.14  gA(p2h2 + p1h1)
2.15 0.909m

2.16 69.9 x 10° Pa

2.17 —900g Pa

2.18 py = (poz + m2z*/3)g

2.19 5.8atm

2.20 3.12m

2.21 2.34m

2.22 R, = 34961b;/ft, Ro = 37001b;/ ft

2.23 (a) pgH?w/2; (b) 2H/3

2.24 3.124n.

2.25  ha/hi = (p1/p2)""?

2.26 hl/hQZ\/pQ/pl

2.27 (a) pgwH(d + H/2), (b) pgwH?(d/2 + H/3)

2.28 4pgwb?, acting 7b/6 below top of door

220 (a) prgs, pugD + pag(z — D), (b) F/(p1 DgLw) = 1+ (p2/2p1)(L/ D),
(€) (L/2) (1 + (2p2L)/(B3p1D)) (14 (p2L)/(2p1D)) from top of gate

2.30 pu =2M,/(WB?) — pgh + pgB/3

2.31 pg/pl = (3H1 — b)/(3H2 — b)

2.32  (a) 2pWgh*Vv/2/9; (b) 8pWgh?/81

2.33 D?® - 3HD?+2H? = 3(MH/pb) cosfsin

2.34 Need solution

2.35 M = pWL/cosO[H + (2L/3) sin 6]

2.36  pgbW (3h —b)/(6 cosf), normal to the gate

2.37  p2/p1 = (Hl/H2)3 cos? 0

2.38 14d/9 from surface along wall

2.39  F = (mH} — p2H3)Wg/2, (p1 Hi — poH3)/3(p1 H — poaH3) above apex

2.40 p2/p1 =2

241 p2/p1 =2

2.42 [SmL cos 0 sin? 0/ pw

2.43 p2/p1 = (%)3

2.44 (2hy —2Lsin@) / (3he — 2Lsin6)

2.45 pg(H — (b/3)sinb)

2.46  5pgh/6 + W sin 20 /nw

2.47  2¢/b

2.48 p(3h —2Lsin®) /(3pscosh)

2.49 Tpwb®/ (3L sin” § cos 0)

2.50 pgwL[h — (L/2)sin 6], 3hL — 2L*sin 0/ (6h — 3Lsin ) from O along the window
2.51 (sinfy/sin6;)*?

}1/3
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2.52  (5/6)pgwL?sinf/ ((1/2) cos O + sin §)
2.53 pg(h — Lsin6/3)
2.54 (a) pa/pg+ h/2, (b) (wh/sinb) (pa + pgh/2), (c) (wh2/2 sin? 6’) (pa + pgh/3) CW
2.55 (a) (2/3)pgwL (H — Lsin@/3), (b) (4/9t) (2H — 5L sin6/9),
(¢) prwtL?cos0/2 — pgwLl? (H/2 — Lsin0/3) /18
2.56 (a) pg (H3/6 + H3cos 9/81), (b) normal to the window H/3 from the hinge
(
(

2.57 (a) 3pgwH?3/(2sin0), (b) pgwH?/(2sin0), (c) pgwH?(1/3 + sin® §) /(2sin® 0)
2.58 (a) 3pgh?/(8sin @), normal to the surface, (b) z = 2h/9, (c) —(3pgh? cot 8/4)j
2.59 0.8

2.60 W —pV

2.61 (6M/mp)t/3

2.62 6.4

2.63 8.33hrs

2.64 (a) 0.08, (b) sinks, (c) no
2.65 volume = 2.24m?

2.66 389N, 87.31by

2,67 15
2.68 0.75
2.69 2

2.70 3b/4

2.71 d=puw(H —D)/po
2.72 (a) 3pgL/4, (b) 3npgLD?/16

2.74 D3/nV

2.75 2.06p,gA

2.76  0.255D

2.78 (a) 0.85

2.79  [3M/(4(pw — pb))]"/*
2.80 3.32b

2.81 pw’Lg/8

2.82 Need solution

2.83  2b/3 below interface

2.84  3pugV (1= ps/pw)

2.85 D?*(h— D/3) — 2abL(0.86 — (h — D)/b) =0
2.86 pH® —3pHL? —3mL> =0

2.87 d=2hr%/(3b7)

2.88 b=52H

2.8 B=2h

2.90 (a) 16,564 1bs, (b) 3.93 ft along the plate from its top edge, (c) 10.6 ft from surface
2.91 2MgL cos0/(wd?) — 2pgdsin /3

2.92 M = (pwD/cosf) (H/2+ Dsinf/3)

2.93 pg(D+2Lcos0/3)

2.94 h® =6WLsin®6/(pw)

2.95 (a) 1pgwh®\/(b/h)2 + 81, (b) b/h =9
2.96 2pgH%a/3 at 3H/4

2.97 p2/p1 =25

2.98 pgab (D — 2a/3), D = 3WL/(pgba®) + a/2
2.99 (a) mpghR?/2, (b) TpgR?/8

2.100 80 1b;

2.101 pla+g)H

2.102 (a) 0.547 ft, (b) 69.1mph

2.103 0.134¢

2.104 39.6rad/s

Chapter 3

3.1 0.3821bym/s; 10 ft/s
3.2 (a) 499 kg/s, (b) 63.7m/s, (c) 31,800 N
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3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47

3.48
3.49
3.50
3.51
3.52
3.53
3.55
3.56

3.57

ANSWERS TO SELECTED PROBLEMS

Vo =1.33m/s, Vs =2.08m/s
8.33 ft/s; 6.67 ft/s
119m/s; 215m/s
0.8m/s
0.0736 m?/s or 1167 U S gpm; 12 hoses
1011 s
Level falls at 0.0026 m/s
Vo/Vi =2
0.00610m?3/s
(a) 5V1A1/4, 5pV1A1/4, (b) pVEA1((1 — 25c0s0/32)i + (1/8 — 25sin6/32))
(a) 7 = —0.0146y/h, (b) 0.666m/s, (c) 1.33 x 1073 m?3/s, 1.61 x 1073 kg/s, (d) 441, (e)
0.0273
pV3rD? /2
Uz = Ur +¢/2D, F/(2pUf DW) = (p2 — p1)/(3pU7) + (4/DU1) ((4/4DU1) + 1)
Ve = 0.6Vi; pp —pa = pVi2/25
42751by
pV2rR? (cos 30°i — (1 — sin 30°) j)
0=mn/4
phwUZ ((2/27) cosa — 1) i
Uz = 8U1/5; Fp = ph*(gApm/p — 3UL/25)
ApbVin /3, 2Vin /3
1hs = 4pQWb/9
Us =3(Ur 4+ Ua) /4
QU W (ha — h1)
Up /U, = 3b/2h
302Uy + Uyn) /4, 16pWHUZ /15
Up = 3aUi /2b, 6pWa?U7 sin 6/ (5b)
U = 2Ura/b, (4pWaUZ /(3D))j
p2 = 3p1/2; 2p2WhU3 (cos 0i + sin 6j) /3
(p1Ur — p2Unm /2)/(2L)
(a) Uz/Ur = (1 = §/2H)™", (b) 1 — (U2/U1)?, (c) 1 — (U2/U1)*(1 — 56/(3H))
(a) b= 3a/2, (b) 20WUZ,a(i— 0.8j)
(a) 2U1/3, (b) pUiaw (2p1g/pU12 —cosf + 5/9) i — pUiaw sin 6j
Uy = 2Uy; F, = —pU2Dw/3
T/(2pUrD?) = (pa — p1)/(5pUR) + (U JUL)? — 2
(a) 6 = 0.25D1, (b) 1/15
(a) Vo = Vihi/ha, (b) F = (p1 — p2)Wha + 8pW (Vih1 — V5'ho) /15
Um/Uaw = 1.5; Cp = Cp — 0.4
) Uz = 3Us, Uy = 9U1 /4, (b) p1 — p2 = 4pU%, (c) F/(pUZRW) = —3p1/(pU?) + 12/5
) Cp = (U2/U1)* =1
16/15),0U2 wb (1 —cosa)
a) 2V, (b) —pV2Acosbi+ [pV2A (sin@ — 3/4)] bfj
a) 5V1/2 (b) Cr = F/(3pViwh) = (160sin )i + (12 — (160 cos 6/9))j
a) 0.5, (b) — (thpr cos @ + 2hwpi4 cos a + (4/5)hpr12) i— (2wth12 sin @ 4+ 2hwp1 4 sin a) j
a) 3Vi/4, (b) pVEwD?/4((7/16 — sin ) i + cos 6j]
) 2, (b) —2pVihw (8/15 +16cos0/15 + p14/pVi + p2g cos 9/2;)\/12) i
— 2pVZhwsin 6 (16/15 +pgg/2le2)j
—phwV?/4
(a) 8pU%D/15L, (b) 8pU2 Da/15
(a) 3/4, (b) hw(3/5)pVi’i — 2hw (pig + pV7/3) ]
(a) UodW/3; pU3SW/3
Cp=1/3
(a) Uss H/2L, (b) F = pULHW/6
2gh?sin @ /mv
4pViL?/ (7rd2pV62 cos a)
pnD?*V2L /4 CCW

(a
(b
(
(
(
(
(
(a
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3.58 F,/F,=sinf/(1+ cos?)

3.59 (a) pV2WD((cos8 — 1)i +sin6j), (b) pV>W D((cos @ — 1)i + sin 6j) /4

3.60 F =998i—1729j N

3.61 (a) 5, (b) 44m/s, (c) —pVs Haw((1 + cos )i + sin j), (d) magnitude x1/4
3.62 321010by

3.63 (a) F =0, (b) 113N, (c) 1.63m

Chapter 4

4.1 y = Cz (C is a constant)

4.2 y = Cz (C is a constant). Pathlines and streamlines are identical in steady flow.
4.3 y—2=Inz

4.4 y = 2z; 0.25 time units

4.6 (d) pag = —8pV/9, (€) prg = 11pV2/18

4.8  p1—p2 = 15pV3/2

4.9 24

4.10 7°, (A1/A5)? -1

4.11 42.8m/s

4.12  15pV3/8

4.13 —75Pa

414 \/2(p —p2) /1

4.15 10.16 psia, 8.64 psia

4.16 81.2m/s; Cp = —0.833

4.17 0.517psi/ ft

4.18 (a) piy = 15pV/2, (b) 25.2° from horizontal
419 F./(pUiA;) =45

4.20 36510by

4.21  —pVZ7R*((1 4 cos )i + sin 6j)

4.22  —pVZnR?*((17/2 + 4 cos 0)i + 4 sin 63)

4.23  (a) L2pU7, (b) pA1 V7 (—11.96i — 2j)

4.24 —9pV7PA/2

4.26  8.58 ft* (depth constant); 8.53 ft* (depth varying with time)
4.27  h=8¢*/(gnd*)

4.28 A\/2gH, pgH

4.29 hsin® 6
4.30 V = +/gL; if L (that is, V) or H gets too large, cavitation can occur
4.31 821 ft

4.32 (b) AJA, = \/H/(H: —y), (c) H3 = Hysin? 6, (d) vol = 2H; A, sin
4.33 (a) V. =4.95m/s, (b) V. =4.89m/s

4.34 (a) 7.67m/s, (b) 2.67m/s, 25,600 Pa, (c) 7.75m

4.35 Hsin?0; —2pgH A cos 6

4.36  (a) v2gH, (b) —2pgH Acos#, (c) Hsin?6

4.37 Hsin®0; pgH (Ar + 2A; sin6)

4.38 Hs; = H; sin? 0; vol = 2H1 A3 sin 6

4.39 (a) 255pV?/2, (b) 2897pV2D?/8 (vertical)

4.41 F = pVEZHW/2 (to right)

4.42  (a) p2gD, (b) (A1/A2)* = 2g(p2D — p1(z2 — 21)) /1 Vi) + 1
4.43  V? = (2pmgh/p.)/(D/d)* —1)

4.44 409p,U2/16

4.45 pg/pl :16/3, Cp:4

4.46 (a) A3/A2 = h1/(h1 +4 hg), (b) vol = 2\/EA2 (\/ hi+ ho — \/E)

4.47  (d*V;/8D)+\/(pm/2Mg)

4.49 (a)0. 676 1.172, (b) —0.711pV7

4.50 (a) 2V, (b) 3pV?2/2, (c) 5pV2A/2, 51.3°

4.52 (a) v1/2 (b) plgAl —pV12A; (14 (3/4) cosh) (c) (1/4)pVZArsin, (d) (3/2)pVi
4.53 (a) —pA3V2/A3 (cosai + sin aj), (b) (1/2)pV7 [(A1/A2)2 - 1],
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(c) —(1/2)pV A, [(Al/A2)2 —2(A1/As)cosa + 1], (d) pVi2As (A1/As)? sin
4.54  (a) 3pV/2, (b) +pVi (cos — 5/2)
4.55 (a) 0.5pV7 [(A1/A2)? /4 —1], (b) —0.5pV7 [(A1/A2)” A+ 1+ (A1/Asz)sinb)] j

Chapter 5

5.1 [3], compressible

5.2 [2], dy/dz = 4/3

5.3 45°

5.4 V-V =2+522 When V-V =0, flow is incompressible.

5.5 No (V -V #£0)

5.6 (a) [2], (b) 4zy, (c) 63.4°

5.7 (a) —p(2yt + y°x), (b) 2zy + 4yt + 2y°2%t/3

5.8 (a) —z + 4wy + 2*y/3 — ztz?, (b) incompressible

5.9 on plane where z = 3

5.10 yes, flow is incompressible

5.11 compressible

5.12  yes, flow is incompressible

5.13 —3/z; —2(6x + 3yx + 2t + yt)/(xt). Flowfield is not possible since Dp/Dt # —pV - V.
5.14 2at + 182y + 16x2; —18(at® + 2y). Flowfield is not possible since Dp/Dt # —pV - V.
5.15 (a) 2, (b) =2t —yz, (c) 2z(1 + 2t%)

5.16 (a) incompressible, (b) 8(i+3j), (c) 24, (d) L*/T

5.17 (a) —4ay, (b) (8x3y? + 622)i + 12k

5.18 (a) unsteady, (b) [2], (c) DV /Dt = 18z%i+(4zz+122%2t+1622%t%)k, (d) V-V = 6z+4xt # 0
5.19 (a) [2], (b) unsteady, (c) compressible, (d) a. = 2zy + 4wy?t® + 222y3t/3

5.20 (a) compressible, (b) steady, (c) [2], (d) 0 = 7/4, () —2xy*i + 184°]

5.21 (a) [2], (b) unsteady, (c) incompressible, (d) —2°/3 + 2°t*/3

5.22  (a) [3], (b) unsteady, (c) incompressible, (d) a, = xy®2* + x2t* + 3zy

5.23 (a) [3], (b) steady, (c) 2i — 2j, (d) 0.5

5.24 (a) incompressible, (b) unsteady, (c) [3], (d) 4z + 5zy>t, (e) —p(4z + 5zy>t)

5.25 (a) [3], (b) ax = 2*(2®/3 — 2), (c) incompressible

5.26 (a) [2], (b) steady, (c) —2zz

5.27 (a) Yes, (b) z22°

5.28 (a) [2], (b) incompressible, (c) rotational

5.29 (a) [2], (b) unsteady, (c) incompressible, (d) 2z (1 + 2t2) i—2y (1 - 2t2)j

5.30 (a) [3], (b) incompressible, (c) 2zy*22, (d) —26.6°

5.31 (a) [3], (b) steady, (c) incompressible, (d) (9 + 4z) (zi+ yj), (e) —p (9 + 42) (zi+ yj)
5.32 (a) [3], (b) incompressible, (c) zi+ 4yj + zk

5.33 (a) [3], (b) steady, (c) incompressible, (d) 0, (e) 4uk

5.34  (a) [3], (b) [-1,0.5], (c) (ab+2b*) z°y?

5.35 (a) [2], (b) steady, (c) incompressible, (d) 8x>i4+24x2°j+8x22k, (e) —p (8w3i + 24223 + 8m2zk)
5.36 (a) —26.6°, (b) 1/y =0.5lnz+ 1, (¢) —14.85 Pa

5.37 (a) [2], (b) compressible, (c) no, (d) 4zi + 2y°%j

5.38 (a) [2], (b) no, (c) incompressible, (d) —(1/3) (23 + z5t2)

5.39 (a) [2], (b) incompressible, (c) 4a3y?, (d) —4xi + ayj — (4y2 + 2362) k

5.40 (a) incompressible, (b) —6xi — 622, (c) —6uk

5.41 (a) [3], (b) incompressible, (c) 3z(yj + zk), (d) —3pz(yj + zk)

5.42 (a) [2], (b) unsteady, (c) incompressible, (d) —62%, () 62

5.43 —y%/3

5.44 v =y

5.45 (a) =2y, (b) po — (p/2) (42* — 122y + 13y°)

5.46 p=c/z?

547 a+e+7=0

5.48 u = —2yzr—2z+ f(y). Also, u = —2yx — 2z + f(y) + f(t) would work for unsteady flow
since it still satisfies V-V = 0.

5.49 v = Ay/z?
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5.50 (4/r% —1)cosf
5.51 (a) u, = or/2h, (b) ar = 2.22 x 10° m/s?
5.52  Show that the LHS and the RHS of the Navier-Stokes equation are equal (and zero).

Chapter 6

6.3 = —(A/k)e* cos ka

6.4 (a) yes, (b) irrotational, (c) p = pA%k?sin® kx
6.5 (a) yes, (b) rotational, (c) p = —2pA?k?sin® kx
6.6 (b) u=Vo,v=0, (c) Vo

6.7 Vo(—sina z + cosa y)

6.8 b)u=z,v=—y, (c)1

6.9 ¢ =1r3sin30; |V| = 3r?

—

6.10 (a) Voz, (b) Vo(cosa = +sina y), (c) 2° + ¢, (d) 7 cos 30
6.11 ¢ =2xy
6.12 w:c(x2y+a2y—y3/3),¢:c(y2m—a2x—x3/3>

6.13  wu, =0; up =20m/s

6.14 (a) ky*/2, (b) no, flow is rotational

6.15 ¢ = 1.04y% + 1.5y m/s

6.16 0 —logr

6.17 (b)) ur =0, ug = A/r, (c) —Alogr

6.18 (b) 0, v/2 and 1.225, —1.225, (c) (2r*/? cos 30/2)/3
6.19 (a) ¢Voz + L(Iny/22 + 92 —In\/(z — b)%2 + 42, (b) b/2 — \/(2qb + 7b2Vy) /An Vo

6.20 0=r/6

6.21 (a)r=Q/(21Ux), 0 =7, (c) 2m, (d) (p — Poc)maz = 2.408 Pa, (p — Poo)min = —1.4 Pa
6.23 ¢=0.6m?/s

6.24 ¢q=3.75m?/s

6.25 T'=-21m?/s

6.26 1.592m/sforI'=—10m/s, s=4m

Chapter 7

7.7 0.0129 x 107%m?/s

7.8 12.5mm

7.9  (b) 30 x 10%1b;/in?, (c) 0.05 Hz

710 (b)) Wi = 4wy, Trn = Tp/2

711 (a) 4, (c) Py =4Pm, Vi =V,

7.12 (b )1794rpm 0.776 N -m

7.13 same

7.14  29L(psa/mg)? =1~ (ps/pa)(a/A)* (e /rirs)?
7.15 (a) 50 ft/s, (b) 3.75rps

7.16  (b) Vi =V, /2, fn = 2,

7.17 (b) d2 = d1/Vv2, No = N1+/2, (c) none
718 (b) Vo = Vjy, F = F,/100

7.19 (b) Dm = Dyp/2, wm = 4wy

7.20 (b) Vlm = V1p/2, Vim = I/1p/8
7.21  (b) 0.2

7.22  (b) 15,600 N

7.24 (b)) Vin =2m/s, vim = v1p/125
7.25 (b) drag increases by 10%

7.26  (b) Va = 0.183V4, vs = 0.00611;
7.27  (b) 10, 1/100

7.28 (b) 0.033m/s, 0.04 Hz

7.29  (b) 0.1, 0.1, 0.001

7.30 (b) V3m/s, 1/v3 Hz, 3v/3vwater
7.31 1/1/10, 10, or /10

1
7.32  (b) 4, 1/2
7.33 (b) 5V, or'V,



212 ANSWERS TO SELECTED PROBLEMS
7.34 (b) 0.5,1/80

735 (b)2V-—-porV,

7.36 (b) 5, 5,25

7.37 (b) 0.5,0.125

7.38 (b) 2V,, 0.5w,

7.39 Need solution

7.40 (b)) Vp, 2wy

7.41  (b) 0.25¢,, App, 0.25P,

7.42 (b) w,/100, 10°P,

7.43 0.1kg/m? v10m/s, 1.9 Hz

7.44 (b)) Voo =V,, App, = Ap, /2

Chapter 8

8.1 600 (laminar)

8.2 10,000 (turbulent)

8.3 V <0.065ft/s

8.4  0.0028 ft/s, 0.0141 ft/s

8.5 (a) 519 (laminar), (b) 173,000 (turbulent), (c) 5.19 x 10° (turbulent)
8.6  64.2; 0.0787

8.7 220

8.8 4.50 pst

8.9 87 min

8.10 15

8.11 AT = -15°K

8.12 26.8m/s, 448m/s

8.13 325°K

8.14 (a) 5.25 x 10° Pa, (b) 5881 N - m

8.15 ppy = 81,500 Pa

8.16 5.10m/s

8.17 ¢ =0.022m%/s

8.18 pi, = 24.7pV?

8.19 480m

8.20 H = (V?/2g)(1+ fL/16D + Cp1/16 +2fL/D + Cp»)
8.21 0.22m/s, 33 x 107 m?3/s

8.23 (b) y/h=u/Uo

8.24 6uV/D

8.25 (a) —(R/2)(dp/dz), (b) —2uUcL/R
8.26  40.0 ft3/s, 0.057 psig

8.27  0.456 ft3/s, —6.74 psig

8.28 0.0748m?3/s (0yrs); 0.0738m? /s (5yrs); 0.0728m*/s (10yrs); 0.0716 m*/s (20 yrs)
8.29 13.5°

8.30 6.5°

831 hi/ha=79

8.32 2.5in.

8.33 V. =./80gd

8.34 4.Thp

8.35 +200kW (pump)

8.36 —T768 kW (turbine)

8.37 131kW

8.38 (a) 0.0924 Pa, (b) 3.70 Pa, (c) Re = 865
8.39 V =Uc/2; C; =16/Re

8.40 (b) —8Uou/D?, (c) —8Uyy/D?

8.41 (a) 1w = pgD/4, (b) v = gD?/(16U.)
8.42 (a)u= (h’gsinf/v)(y/h—3%(y/h)?); ¢/width = gh®sin6/(3v), (b) ¢/width = hy/2ghsin 6/ f
8.44 227.5W

8.45 (16 + Cp1 + 32fL/D + 16Cp2) (V" /329)
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8.46 (a) 10.4m/s, (b) 44.3m/s, (c) 482 kW

8.47 (a) 1.81m/s, (b) 1/6m, (c) 990 W

8.48 (a) 1.89m/s, (b) —30,322 Pa, (c) 109 W

8.49 T5.7kW

8.50 (a) turbulent, (b) 5.9m

8.51 57.2kPa

8.52 (a) \/(2gH), (b) \/(gH/3), (c) 0.15mgH/(gH/3)
Chapter 9

9.1 Rer, = 43,000 (laminar)

9.2  1/3

9.3  uU./d,2/Res, §/2,6/6

9.4 (a) 16/Rep, (b) TR/2, TR/6

9.5 (¢)V=Un/3; C; =12/Re

9.6 16p/ (phUp) = 16/Rep,

9.7 (a) 6" /x = (K/2)/v/Res, 0/x = (K/6)//Res, (b) 3
9.10 (a) 1.5, 0.5, (b) ((BuwU./c) v Rer, (c) 0.3750

9.11 (a) pgdsinf, uVs/8, (b) 2sin0/F2, 2/ Res

9.12  §/10, 95/110, 11/9

9.13 (a) Re, = 1.28 x 10° (turbulent), (b) 22mm, (c) 0.00444, (d) 1.05 N
9.14 (a) U. = 1.153m/s, (b) 6 = 22mm, (c) 0.00444, (d) 2.94 N
9.15 (a) 1.4 ft, (c) 0.4621b;

9.16 1.35

9.17 (a) (0.037U./Re%?)(y/8)®'7, (b) 0.0067°, 0.0268°, 0.107°
9.18 (a) 7/72 ( ) 0. 296pU§k/Reg‘2

9.19 (b)p 3PUL((U2/U1)* = 1)

9.20 (a) Tw —2MUmm/h (b) 2Upmaaz/h

9.21 7wuU./(20), 7/Res

9.22 4/3

9.24 (a) 36/8, 395/280, 356/13, (b) Fp = 2pwUZ26

9.25 df/dx = (dd/dx)/6; Cy =2v/Ucé

9.26 T, = 1.5pU./d

9.27 (a) 3uU./26, (b) Cy = 3/Res, (c) 0.375

9.28 (a) 0.364, 0.137, (b) 6"/« (half angle), (c) 1.308/v/Rer
9.29 193 hp

9.31 1.85(L/D)(1/Cp)Re;"?

9.34 1200N

9.35 831b;

9.36 406 b,

9.37  721b;

9.38 (a) 1.20m/s, (b) 35.6 N

9.39 (a) 1381by, (b) 92mph, 62 mph

9.40 3.61m/s

9.41 ~30m/s

9.42 31.3m/s

9.43 6.95m/s

9.44 0.026m/s

9.45 28.6m/s, 3.16m/s

9.46 (a) 1035 Hz, 1922 Hz, (b) 690 Hz, 1281 Hz, (c) 517 Hz, 961 Hz
9.47 (a) 1.76 Hz, 25 ft, (b) 422 Hz, 2.5in.
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Chapter 10
10.1  30°
10.2 4.64m

10.3  140m/s

104 U+ /gy

10.7 F1<1, F2>1

10.9 15.6 ft3/s

10.10 8.3 ft

10.11 F; = 0.386, F> = 0.932

10.12 F; =0.192; H/Y: = 0.519

10.13 Fy =0.316; F» = 2.53

10.14 F1=\/2h1/1/1;Y'2=2(h1—h2)/3

10.15 0.990, 0.316

10.16 (a) Fy ~ \/2H/hy; (b) Fi = 2.53; (c) b= 1.41h,
10.17 h/Hi=1—-W1/W;

10.18 (a) 0. 543 (b) 0.266, (c) Cp = Fy/pgwH? = 0.218
10.19 (a) 0.5, (b) 0.77, (c) 0.10

10.20 (a) 2 ( ) 0.707, (c) 0.25

10.21 (a) 0.5, (b) 0.77

10.22 (a) 2.4, 0.075, (b) 2.2

10.23 (a) 0.567, (b) 0.44

10.24 (a) supercritical, (b) 1.837, (c) 0.438, (d) 3.541
10.25 (c) 0.5, 0.77, (d) 2/3

10.28 Vi =5.43 m/s Vo =271m/s

10.29 6.07 ft

10.30 (d) Hy/Hy = (\/1+ 8F2 —1)/4F3, or H,/Hs = (\/1+8F2 — 1), () 2.26m
10.31 2.67 ft

10.32 1.813m

10.33 2.65m

10.34 U,/U, =05

10.35 2.04 ft, 2.84ft/s

10.36 2.96m

10.37 4.64m/s

10.38 0.74m

10.39 2.25m/s, 3.34m/s
10.40 4.42m/s

10.41 3.42m/s, 0.71m/s
10.42 (a) 5.5m/s, (b) 2.7m/s
10.43 6.43m/s

10.45 (a) Y2 = 2Y1/3, (b) F3 =2, (¢) Ya = 0.791Y1, (d) Fy = 0.547, (e) F5 = 0.30
10.46 (a) Y2 = 3Y3, (b) Y3 = 7.12Y1, (c) F3 = 0.547, (d) Fy = 0.872, (e) By = 0.318B;
10.47 (a) Y2/Y1 =2(F7/2+1— H/Y1) /3, (b) Fs = 2V2F}, (c) Ya =11

10.48 (a) 0.707, (b) (h1/hs)® — 5 (h1/hs) +4 =0, (c) 0.97

10.49 F1 =4.0, Y2 =12.9mm
10.50 hs3/hs = 1.863
10.51 Y>/Y1 =0.63, Y3/Y1 =0.19

10.52 (a) Fy = 2.55, B2/B;1 = 1.66, (b) Y3/Y1 =157
10.53 (a) F3 = 2.83, (b) B3 = 2By, (c) Ya = 0.883Y;
10.54 (a) 0.35, (b) 0.31, (c) 0.25, (d) 0.74

10.55 (a) 1/v/3, (b) 1/8/3, (c) 1/24, (d) 0.642
10.56 ( )075 (b) 0.77, () , (d) 0.55

10.57 Fi =+/2(H - Y1)/Y1

10.58 ( ) F, = 1.51, (b) 3.38Y;

10.59 0.39

10.62 (a) F» = 1.98, (b) F = —0.115pgwY?, (c) F = 0 (ignoring friction), (d) F3 = 0.552
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10.63 (a) F» =1, (b) Y2 = 0.63Y1, h = 0.18Y1, (c) Cp = 0.069

10.64 (a) 0.152, ( ) 0.529

10.65 (a) 15pgh2/32 3pV2h, (b) Yo = (h/8)(V1+ 512F2 — 1), Fy = (h/Yy)"®
10.66 (a) Fi =0.193, (b) H = 0.519Y1, (c) 0.298pgwY?

Chapter 11

11.1  347.2m/s, 1017m/s

11.2  1.823, 1.856, 1.929, 2.010

11.3  Subsonic

11.4 14.78 psi, 60.8°F (520.5°R)

11.5 122kPa, 29.9°C (303.1°K

11.6 128 kPa, 34.9°C; 102 kPa, 21.9°C; 35.7 kPa, —30.0°C
11.7  0.437, 2.033

11.8 3444 ft/s (2348 mph)

11.9 2.13, 93 x 105; 2.03, 113 x 10°

11.11 266 kPa, 3.74kg/m>, —25.6°C (247.6°K)

11.12 (a) 255m/s, (b) 551 kPa, compared with 881 kPa
11.13 6100 Pa, 0.236 kg/m>, 104 kPa, 475m/s

11.14 247m/s, 670°K, 320 J/kg - ° K

11.15 a factor of 6

11.16 68.6°K, 668 Pa, 0.91kg/s

11.17 3.40, 0.0247m?, 0.0040 m®

11.18 (a) 1.10 x 10° Pa, (b) 196°K, (c) 19.6 kg/m?, (d) 30 kg/s
11.19 (a) 0.120kg/s, (b) 3.73kPa < p, < 33.5kPa

11.20 (a) 4.05kg/s, (b) 0.147, 2.94, (c) 670 kPa, 20.3 kPa
11.21 14.74°

11.22 43.79°

11.23 (a) 2.68, (b) 2.24, (c) 1.93

11.24 (a) 2.00, 183 kPa, XX°K, (b) 6.45J/kg - °K

11.25 (a) 1.64, 312kPa, 379°K, (b) 4.07 J/kg - °K, (c) 15.5°
11.26 1.67; p2/p1 =0.779

11.27 23.7°, 20.6°

11.28 5.92°, 41,400 N

11.29 L=779N, D =995N

Chapter 12

12.1 N}, =53, Francis

12.2 303 rpm

12.3 ¢ =50.5ft3/s, r = 9.25 ft

12.4 ¢=3.34m3/s, 3.8 MW

12.5 2r=22m, N, =24

12.6 D =0.82m, P=54MW, N =18rad/s
12.7 Ny = 1650

12.8 N; =6552

12.9 centrifugal, mixed (respectively)
12.10 1280rpm

12.11 1.85 x 10° gpm

12.12 4 in series

12.13 (b) 1370

12.14 6.5 ft

12.15 347 rpm, 73,000 gpm

12.16 1.86 ft, 172 hp, 121 ft

12.17 0.076 hp

12.18 92%

12.19 38,800 ft - lbs, 1480 hp

12.20 393 rpm
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12.21
12.22
12.23
12.24
12.25
12.26
12.27
12.28
12.29
12.30
12.31
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25.1 kW

1580 rpm, 30.4 hp

(a) 61.6°, (b) 1.05 MW

0.71, 39 hp

154 kW, 25 rpm, 5.6 m/s

0.74, 85%

82%, 170 mph, 1180 hp, 26091by, 0.36 psi
420 km/hr, 10,220 N, 1.02 MW, 851 kW, 83%, 4020 Pa
4 shafts, 244,0001b; - ft

314kW, 11m/s, yes

1.94 ft*/s, 1.40 ft3/s

Chapter 13

13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12

13.13
13.14
13.15

(a) very stable, (b) stable, (c¢) unstable

(a) neutral, (b) unstable, (c) stable

(a) 2.83m/s, 3.33m/s, (b) 5.02m/s, 7.80m/s
13.6m/s

(a) 6952 ft, (b) 4861 ft

(a) 2176 m, (b) 948 m

378 m

(a) 3.0 x 1073 m/s, 0.3m/s, 4.3m/s, (b) 6.0 x 1073m/s, 0.6 m/s, 6.0m/s
(a) 5.4 x 107°m/s, 5.4 x 1073 m/s, 0.13m/s,
(b) 1.1 x 107*m/s, 1.1 x 1072 m/s, 0.23m/s
0.37m/s

7 ft

44 ym





